
                      Task Assignment in Multiprocessor 
Environment using Grouping Genetic Algorithm.  

 
Gathala Sudha Anil Kumar 

MTech Dual Degree. 
Department of Computer Science and Engineering. 

IIT Kharagpur. 
sudhaanilkumar@yahoo.co.in 

 
Abstract − Task Assignment is an important scheduling 
problem in multiprocessor and distributed systems. The Task 
Assignment problem is concerned with how to assign tasks to 
the processors. If the system is static, as most current hard real 
time systems are, the task assignment is done offline. Many well 
known offline heuristic algorithms exist for the Task 
Assignment problem. In this paper we present a grouping 
genetic algorithm (GGA) to solve the Task Assignment problem 
for a static system and compare the GGA’s performance with 
other well known heuristics. 
 
1. INTRODUCTION 
The abstract goal of the static task allocation problem is as 
follows: 

Given a collection of tasks and a set of processors on 
which these tasks will be executed, that mapping of tasks to 
processors should be found which does not overload any 
processor.  
To achieve good performance in a multiprocessor system, it 
is essential to maintain a balanced load among all the 
processors. Therefore, a good solution to the Task 
Assignment problem loads all processors as equally as 
possible. In this paper, we compare the performance of 
different well known heuristic task assignment algorithms 
with that of GGA based task assignment. The rest of the 
paper is organized as follows: The second section presents 
the formal definition of the Task Assignment problem. The 
third section discusses the four well known heuristic 
algorithms. The fourth section presents the Grouping 
Genetic Algorithm. The fifth section presents some 
experimental results and the conclusions are presented in the 
sixth section.  
                    

2. THE TASK ASSIGNMENT PROBLEM 
The following is the formal definition of the Task 
Assignment problem with ‘N’ tasks and ‘M’ processors, 
where we make use of Stinson’s terminology for 
combinatorial optimization problems [1]. 
 Problem Instance: 
Tasks:                                      T1, T2,  ….. , TN. 

Task Utilizations:                   TU1, TU2,  ….. , TUN. 
Processors:                              P1, P2,  ….. , PN. 
Processor Utilizations:          PU1, PU2,  ….. , PUN. 
Where, 
TUi is the utilization of task Ti. 
PUi = ∑ (TUk), for all TK assigned to Pi. 

Feasible Solution: 
A feasible solution to the Task Assignment problem is the 
assignment of each task to one and only one of ‘M’ 
processors, such that no processor’s utilization exceeds one. 
More formally, a feasible solution is the vector: 
 a = (a1, a2, ....., aN). 
Where, 

ai = k, implies that the task Ti is assigned to Pk, and, 
 PUK ≤ 1, for all k belonging to [1, M]. 
Objective Function: 
The objective function is: 
ƒobj (a) =∑ (|PUmean - PUi |), for all i belonging to [1, M]. 
Where, 
 PUmean = (PUsum) ÷ M, with 
 PUsum = ∑ PUi, for all i belonging to [1, M]. 
A Good Solution: 
A good solution yields a low object function value. 
 An example: 
Consider a system consisting of five processors on which 
eleven tasks should be scheduled. The individual task 
utilizations are shown in Table 1.  
Table 1 

Task Task Utilization 

T1 0.235 

T2 0.265 

T3 0.259 

T4 0.198 

T5 0.005 

T6 0.597 

T7 0.725 

T8 0.654 

T9 0.692 

T10 0.719 

T11 0.095 

 
A solution to the above problem is: 
a = (5,2,4,1,1,1,3,4,5,2,1). 
The above solution is feasible since: 
PU1 = TU4 + TU5 + TU6 + TU11 = 0.895 ≤ 1. 
PU2 = TU10 + TU2 = 0.984 ≤ 1. 
PU3 = TU7 = 0.725 ≤ 1. 
PU4 = TU8 + TU3 = 0.913 ≤ 1. 
PU5 = TU9 + TU1 = 0.927 ≤ 1. 
 



3. STATIC TASK ASSIGNMENT HEURISTICS 
The problem of optimally scheduling tasks on a 

uniprocessor or multiprocessor system is NP-complete [2]. 
Therefore, different heuristics have been proposed to 
schedule tasks. In this section we discuss four well known 
heuristic algorithms for the Task Assignment problem. 
 
A  Round Robin Task Assignment 
 The Round Robin task assignment heuristic assigns 
tasks in sequential order to the processors coming back to 
the first when all processors have been given a task [3]. 
 
The Procedure 
The step by step procedure of the Round Robin Task 
Assignment algorithm used in our experiments is as follows: 
 

1. Set i = 1. 
2. Set p = number of processors in the system. 
3. If all the tasks are assigned go to step 9, otherwise  

go to step 4. 
4. Obtain the ith task, the next to be assigned in    

sequential order, call it Ti. 
5. Set t = i mod p. 
6. Assign Ti to Pt. 
7. Set i = i + 1 
8. Go to step 3. 
9. End Procedure. 

 
An example: 
We run the Round Robin Task Assignment algorithm on the 
example stated in the 2nd section. 
The above procedure yields the following solution vector: 
 a = (1,2,3,4,5,1,2,3,4,5,1). 
The Processor utilizations are: 
PU1 = TU1 + TU6 + TU11 = 0.927. 
PU2 = TU2 + TU7 = 0.990. 
PU3 = TU3 + TU8 = 0.913. 
PU4 = TU4 + TU9 = 0.890. 
PU5 = TU5 + TU10 = 0.724. 
The objective function value, ƒobj (a) = 0.329. 
 
B. Increasing Utilization Balancing 
 According to the Increasing utilization balancing 
heuristic, the task with minimum utilization among the 
unassigned tasks is obtained. The obtained task is assigned 
to the then minimum utilized processor. 
 
The Procedure 
The step by step procedure of the Increasing Utilization 
Balancing algorithm used in our experiments is as follows: 
 

1. If all the tasks are assigned go to step 6, otherwise 
go to step 2. 

2. Obtain the task with minimum utilization among 
the unassigned tasks and call it Tmin. 

3. Obtain the processor with minimum utilization, call 
it Pmin. 

4. Assign Tmin to Pmin. 
5. Go to step 1. 

6. End Procedure. 
 
An example: 
We run the Increasing Utilization Balancing algorithm on 
the example stated in the 2nd section. 
The above procedure yields the following solution vector: 
 a = (4,1,5,3,1,2,1,3,4,5,2). 
The Processor utilizations are: 
PU1 = TU5 + TU2 + TU7 = 0.995. 
PU2 = TU11 + TU6 = 0.692. 
PU3 = TU4 + TU8 = 0.852. 
PU4 = TU1 + TU9 = 0.927. 
PU5 = TU3 + TU10 = 0.978. 
 
The objective function value, ƒobj (a) = 0.467. 
 
C. Arbitrary Utilization Balancing 
 According to the Arbitrary Utilization Balancing 
heuristic, the tasks are assigned one by one in turn in an 
arbitrary order. Each task is assigned to the then minimum 
utilized processor. 
 
The Procedure 
The step by step procedure of the Arbitrary Utilization 
Balancing algorithm used in our experiments is as follows: 
 

1. .If all the tasks are assigned go to step 6, 
otherwise go to step 2. 

2. Obtain the next task to be assigned in arbitrary 
order and call it Tnext. 

3. Obtain the processor with minimum utilization, 
call it Pmin. 

4. Assign Tnext to Pmin. 
5. Go to step 1. 
6. End Procedure. 

 
An example: 
We run the Increasing Utilization Balancing algorithm on 
the example stated in the 2nd section. 
The above procedure yields the following solution vector: 
 a = (1,2,3,4,5,5,4,1,3,2,5). 
The Processor utilizations are: 
PU1 = TU1 + TU8 = 0.889. 
PU2 = TU2 + TU10 = 0.984. 
PU3 = TU3 + TU9 = 0.951. 
PU4 = TU4 + TU7 = 0.923. 
PU5 = TU5 + TU6 + TU11 = 0.697. 
 
The objective function value, ƒobj (a) = 0.383. 
 
D. Decreasing Utilization Balancing 
 According to the Decreasing utilization balancing 
heuristic, the task with maximum utilization among the 
unassigned tasks is obtained. The obtained task is assigned 
to the then minimum utilized processor. 
 
The Procedure 
We present the step by step procedure of the Decreasing 
Utilization Balancing algorithm used in our experiments: 
 



1. If all the tasks are assigned go to step 6, otherwise go to 
step 2. 

2. Obtain the task with maximum utilization among the 
unassigned tasks and call it Tmax. 

3. Obtain the processor with minimum utilization, call it 
Pmin. 

4. Assign Tmax to Pmin. 
5. Go to step 1. 
6. End Procedure. 
 
An example: 
We run the Decreasing Utilization Balancing algorithm on 
the example stated in the 2nd section. 
The above procedure yields the following solution vector: 
 a = (3,5,4,2,1,5,1,4,3,2,1). 
The Processor utilizations are: 
 
PU1 = TU7 + TU11 + TU5 = 0.825. 
PU2 = TU10 + TU4 = 0.917. 
PU3 = TU9 + TU1 = 0.927. 
PU4 = TU8 + TU3 = 0.913. 
PU5 = TU6 + TU2 = 0.862. 
 
The objective function value, ƒobj (a) = 0.181. 
 
4. THE GROUPING GENETIC ALGORITHM 
The potential of Genetic Algorithms to yield good solutions, 
even for hard optimization problems, has been demonstrated 
by various applications. A recently developed area in the GA 
research is the Grouping Genetic Algorithm (GGA). The 
GGA is a GA heavily modified to suit the structure of 
grouping problems. Those are the problems where the aim is 
to find a good partition of a set or to group together the 
members of the set. The GGA differs from the classic GA in 
the two important ways. Firstly, a specific encoding scheme 
is used so that the relevant structures of grouping problems 
become the genes of the chromosomes. Secondly, special 
genetic operators are used to suit the new encoding scheme. 
Both of these aspects avoid the weakness of the classic GAs 
applied to grouping problems [4].  
 
In the Task Assignment problem, the aim is to find a good 
partition of the task set, so that each partition can be 
assigned to a unique processor. Here the number of 
partitions is limited by the number of processors in the 
system and the sum utilization of each partition should be 
less than one. We recognize the Task Assignment problem 
as a grouping problem and hence apply GGA to solve the 
Task Assignment problem. 
 
A. The Encoding scheme 
Neither the standard nor the ordering genetic operators are 
suitable for the grouping problems [5]. The simple 
chromosomes (in classic GAs) are item oriented, instead of 
being group oriented. Since the cost function of a grouping 
problem is defined in terms of the groups, the group entity 
should be captured in the chromosome. Therefore a two 
chromosome encoding was suggested in [4]. The first 
chromosome (item chromosome) will be the simple 

chromosome (group chromosome) is made up of groups. 
Now the genetic operators are applied on the group 
chromosome and the item chromosome and the item 
chromosome is updated accordingly, after each operation. 
For the Task Assignment problem the item chromosome is 
the task chromosome, each gene of the task chromosome 
represents the processor to which the particular 
corresponding task is assigned to. The length of the task 
chromosome is governed by the number of tasks in the 
system. Each gene in the group chromosome represents a 
processor. The length of the group chromosome is limited by 
the number of processors in the system. 
 
B The Crossover Operator 
A crossover operator should produce an offspring out of two 
parents in such a way that the resulting offspring inherits the 
meaningful information from both the parents to the 
maximum possible extent. In a GGA the crossover is applied 
on the group chromosome. 
The GGA crossover proceeds as follows: 
 

1. Select at random two crossing sites, delimiting the 
crossing section, in each of the two parents. 

2. Inject the contents of the crossing section of the 
first parent at the first crossing site of the second 
parent. 

3. Eliminate all items now occurring twice from the 
groups they were members of in the second parent. 

4. If necessary, adapt the resulting groups, according 
to the hard constraints of the problem and the cost 
function to optimize. At this stage, local problem 
dependent heuristics can be applied. 

5. Apply the points 2 through 4 to the two parents 
with their roles interchanged in order to generate 
the second child. 

A more complete explanation of the crossover operator may 
be found in [5]. 
 
C. The Mutation Operator 
The mutation operator is operated over the group 
chromosome, where a randomly selected group is eliminated 
and a few items are removed from each of the remaining 
groups and a new group is then formed using any local 
problem dependent heuristic. For the Task assignment 
problem we use the Decreasing Utilization Balancing 
heuristic as the local problem dependent heuristic. 
 
D. The Inversion Operator 
A segment in the group chromosome is selected at random 
and the order of genes in that is reversed that is inverted. 
 
E. The GGA Procedure 
We present the GGA procedure used in our experiments. 

1. Generate at random an initial population of 
POPSIZE individuals. 

2. Evaluate each individual according to the objective 
function to optimize. If the current generation 
number is equal to MAXGEN terminate. 

3. Use tournament selection to select first Nc 
individuals and perform crossover over them, 



replace the last Nc individuals with the new off 
springs. 

4. Mutate NM individuals selected at random from the 
current population. 

5. Apply the inversion operator to NI randomly 
selected individuals from the current population. At 
this point, one generation has been completed and a 
new population has been created. 

6. Go to step 2. 
Where the POPSIZE stands for the population size in each 
generation and MAXGEN stands for the maximum number 
of generators for each GA run. 
 
F. The Cost Function  
Two conditions need to be met for a successful GA, namely, 

1. A GA should propagate those individuals (groups) 
that define promising regions of the search space 
throughout the population. This will ensure an 
increased rate of sampling of the promising regions, 
according to the Schema Theorem [6]. 

2. A GA should ensure that the individuals (groups) 
representing points of the search space that are in 
promising regions are also recognized as such, i.e. 
serve as parents in the crossover. The crossover can 
then propagate the high-quality individuals 
(groups) they contain. 

For the Task Assignment problem, according to the 
objective function, the processors with load equal (or nearly 
equal) to the average define the promising regions of the 
search space. 
Where average is given by, 
  Avg = ∑ (TUi) ÷ M. 
The first condition is thus met by casting groups (i.e. 
processors) as genes and applying crossover over the group 
chromosomes, hence transmitting groups rather than 
items(i.e. tasks). In order to meet the second condition, our 
cost function of the GA should be able to distinguish those 
individuals (i.e. processors) which have load equal (or 
nearly equal) to that of the average from others, since the 
former are the promising individuals. Consider two different 
solutions of the TA problem with two processors: 
Solution 1: 

PU1 = Avg. + 0.1 
PU2 = Avg. + 0.1 

Solution 2: 
PU1 = Avg. + 0.2 
PU2 = Avg. 

Both the solutions score the same in terms of the objective 
function of the TA problem. However, the second solution 
has a promising individual (PU2). Hence we need to have the 
second solution participate in the crossover more often than 
the former that is it should score more than the former, in 
terms of the cost function. 
Consequently, we adapt the following the cost function: 
ƒcost(a) =∑ √ (|PUmean - PUi |), for all i belonging to [1, M]. 
Where, 
 PUmean = (PUsum) ÷ M, with 
 PUsum = ∑ PUi, for all i belonging to [1, M]. 

The cost function, clearly, yields a lower value for the 2nd 
solution. Hence, the 2nd solution is preferred more than the 
1st solution. 
 
5. EXPERIMENTS AND RESULTS 
 
A. Experimental Setup 
We performed three sets of experiments. In the first set 
(Under load condition set) the sum of the utilizations of all 
tasks is less than the number of processors. In the second set 
(Just load condition set) the sum of the utilizations of all 
tasks is exactly equal to the number of processors. In the 
third set (Over load condition set) the sum of the utilizations 
of all tasks is slightly more than the number of processors. 
Processors may be slightly overloaded for the latter two sets; 
we designed these two experimental sets to observe how 
equally each heuristic would overload the processors (if 
overloading is allowed) in these conditions. Hence for the 
latter two sets, we dropped the hard constraint that each 
processor load should be less than one. In each of the three 
sets we varied the number of processors from 3 to 15. Each 
processor case was simulated for 10 different sets of 100 
tasks each and the objective function values obtained are 
averaged to obtain the final objective function value. Each 
set of 100 tasks was obtained by generating 100 random 
floating point numbers each corresponding to the utilization 
of a task. The performance of the four heuristics discussed in 
the 2nd section and that of the GGA was compared in terms 
of the objective function value of the TA problem. 
We performed the GGA experiments using a population size 
of 50 and tournament of size two as the selection strategy. 
The number of crossovers made in the formation is about 24. 
The number of mutations is about 20 and the number of 
inversions is about 5. The total number of objective function 
evaluations performed before obtaining the objective 
function value for each processor case (for each of 3 to 15) 
is (MAXGEN * POPSIZE * NUMBER_OF_TASK_SETS) 
100*50*10, which is 50,000. 
 
B. Experimental Results 
We plotted the objective function value versus the number 
of processors for the four heuristics and the GGA. Figure 1, 
shows the plot for Under-Load case. Figure 2 and 3 show 
the plots for Just-Load and Over-Load cases 
respectively.

Figure 1: ƒobj versus Number of processors in the system, 
with Under-Load conditions. 



 
Figure 2: ƒobj versus Number of processors in the system, 
with Just-Load conditions. 

 

 
Figure 3: ƒobj versus Number of processors in the system, 
with Over-Load conditions. 

 
As the plots depict, the GGA performs better than the two 
heuristics. 
 
6. CONCLUDING REMARKS AND FUTURE WORK 
 
In this paper we have applied the popular GGA paradigm to 
solve the Task Assignment for a hard real time system. We 
have compared the performance of the GGA with four well 
known task assignment heuristics through simulations. We 
found that the GGA performs better than the four heuristic 
algorithms. 
In the task assignment problem addressed in this paper, we 
ignored the failures in the system. However, failures do 
occur in hard real time systems. Fault-tolerance is an 
important issue in hard real time systems due to the critical 
nature of the supported tasks. The next step in this research 
is to study the Fault-Tolerant scheduling problem in hard 
real time systems. 
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