
 Task Assignment in Multiprocessor
Environment using Grouping Genetic Algorithm.

Gathala Sudha Anil Kumar

MTech Dual Degree.
Department of Computer Science and Engineering.

IIT Kharagpur.
sudhaanilkumar@yahoo.co.in

Abstract − Task Assignment is an important scheduling
problem in multiprocessor and distributed systems. The Task
Assignment problem is concerned with how to assign tasks to
the processors. If the system is static, as most current hard real
time systems are, the task assignment is done offline. Many well
known offline heuristic algorithms exist for the Task
Assignment problem. In this paper we present a grouping
genetic algorithm (GGA) to solve the Task Assignment problem
for a static system and compare the GGA’s performance with
other well known heuristics.

1. INTRODUCTION
The abstract goal of the static task allocation problem is as
follows:

Given a collection of tasks and a set of processors on
which these tasks will be executed, that mapping of tasks to
processors should be found which does not overload any
processor.
To achieve good performance in a multiprocessor system, it
is essential to maintain a balanced load among all the
processors. Therefore, a good solution to the Task
Assignment problem loads all processors as equally as
possible. In this paper, we compare the performance of
different well known heuristic task assignment algorithms
with that of GGA based task assignment. The rest of the
paper is organized as follows: The second section presents
the formal definition of the Task Assignment problem. The
third section discusses the four well known heuristic
algorithms. The fourth section presents the Grouping
Genetic Algorithm. The fifth section presents some
experimental results and the conclusions are presented in the
sixth section.

2. THE TASK ASSIGNMENT PROBLEM
The following is the formal definition of the Task
Assignment problem with ‘N’ tasks and ‘M’ processors,
where we make use of Stinson’s terminology for
combinatorial optimization problems [1].
 Problem Instance:
Tasks: T1, T2, ….. , TN.

Task Utilizations: TU1, TU2, ….. , TUN.
Processors: P1, P2, ….. , PN.
Processor Utilizations: PU1, PU2, ….. , PUN.
Where,
TUi is the utilization of task Ti.
PUi = ∑ (TUk), for all TK assigned to Pi.

Feasible Solution:
A feasible solution to the Task Assignment problem is the
assignment of each task to one and only one of ‘M’
processors, such that no processor’s utilization exceeds one.
More formally, a feasible solution is the vector:
 a = (a1, a2,, aN).
Where,

ai = k, implies that the task Ti is assigned to Pk, and,
 PUK ≤ 1, for all k belonging to [1, M].
Objective Function:
The objective function is:
ƒobj (a) =∑ (|PUmean - PUi |), for all i belonging to [1, M].
Where,
 PUmean = (PUsum) ÷ M, with
 PUsum = ∑ PUi, for all i belonging to [1, M].
A Good Solution:
A good solution yields a low object function value.
 An example:
Consider a system consisting of five processors on which
eleven tasks should be scheduled. The individual task
utilizations are shown in Table 1.
Table 1

Task Task Utilization

T1 0.235

T2 0.265

T3 0.259

T4 0.198

T5 0.005

T6 0.597

T7 0.725

T8 0.654

T9 0.692

T10 0.719

T11 0.095

A solution to the above problem is:
a = (5,2,4,1,1,1,3,4,5,2,1).
The above solution is feasible since:
PU1 = TU4 + TU5 + TU6 + TU11 = 0.895 ≤ 1.
PU2 = TU10 + TU2 = 0.984 ≤ 1.
PU3 = TU7 = 0.725 ≤ 1.
PU4 = TU8 + TU3 = 0.913 ≤ 1.
PU5 = TU9 + TU1 = 0.927 ≤ 1.

3. STATIC TASK ASSIGNMENT HEURISTICS
The problem of optimally scheduling tasks on a

uniprocessor or multiprocessor system is NP-complete [2].
Therefore, different heuristics have been proposed to
schedule tasks. In this section we discuss four well known
heuristic algorithms for the Task Assignment problem.

A Round Robin Task Assignment
 The Round Robin task assignment heuristic assigns
tasks in sequential order to the processors coming back to
the first when all processors have been given a task [3].

The Procedure
The step by step procedure of the Round Robin Task
Assignment algorithm used in our experiments is as follows:

1. Set i = 1.
2. Set p = number of processors in the system.
3. If all the tasks are assigned go to step 9, otherwise

go to step 4.
4. Obtain the ith task, the next to be assigned in

sequential order, call it Ti.
5. Set t = i mod p.
6. Assign Ti to Pt.
7. Set i = i + 1
8. Go to step 3.
9. End Procedure.

An example:
We run the Round Robin Task Assignment algorithm on the
example stated in the 2nd section.
The above procedure yields the following solution vector:
 a = (1,2,3,4,5,1,2,3,4,5,1).
The Processor utilizations are:
PU1 = TU1 + TU6 + TU11 = 0.927.
PU2 = TU2 + TU7 = 0.990.
PU3 = TU3 + TU8 = 0.913.
PU4 = TU4 + TU9 = 0.890.
PU5 = TU5 + TU10 = 0.724.
The objective function value, ƒobj (a) = 0.329.

B. Increasing Utilization Balancing
 According to the Increasing utilization balancing
heuristic, the task with minimum utilization among the
unassigned tasks is obtained. The obtained task is assigned
to the then minimum utilized processor.

The Procedure
The step by step procedure of the Increasing Utilization
Balancing algorithm used in our experiments is as follows:

1. If all the tasks are assigned go to step 6, otherwise
go to step 2.

2. Obtain the task with minimum utilization among
the unassigned tasks and call it Tmin.

3. Obtain the processor with minimum utilization, call
it Pmin.

4. Assign Tmin to Pmin.
5. Go to step 1.

6. End Procedure.

An example:
We run the Increasing Utilization Balancing algorithm on
the example stated in the 2nd section.
The above procedure yields the following solution vector:
 a = (4,1,5,3,1,2,1,3,4,5,2).
The Processor utilizations are:
PU1 = TU5 + TU2 + TU7 = 0.995.
PU2 = TU11 + TU6 = 0.692.
PU3 = TU4 + TU8 = 0.852.
PU4 = TU1 + TU9 = 0.927.
PU5 = TU3 + TU10 = 0.978.

The objective function value, ƒobj (a) = 0.467.

C. Arbitrary Utilization Balancing
 According to the Arbitrary Utilization Balancing
heuristic, the tasks are assigned one by one in turn in an
arbitrary order. Each task is assigned to the then minimum
utilized processor.

The Procedure
The step by step procedure of the Arbitrary Utilization
Balancing algorithm used in our experiments is as follows:

1. .If all the tasks are assigned go to step 6,
otherwise go to step 2.

2. Obtain the next task to be assigned in arbitrary
order and call it Tnext.

3. Obtain the processor with minimum utilization,
call it Pmin.

4. Assign Tnext to Pmin.
5. Go to step 1.
6. End Procedure.

An example:
We run the Increasing Utilization Balancing algorithm on
the example stated in the 2nd section.
The above procedure yields the following solution vector:
 a = (1,2,3,4,5,5,4,1,3,2,5).
The Processor utilizations are:
PU1 = TU1 + TU8 = 0.889.
PU2 = TU2 + TU10 = 0.984.
PU3 = TU3 + TU9 = 0.951.
PU4 = TU4 + TU7 = 0.923.
PU5 = TU5 + TU6 + TU11 = 0.697.

The objective function value, ƒobj (a) = 0.383.

D. Decreasing Utilization Balancing
 According to the Decreasing utilization balancing
heuristic, the task with maximum utilization among the
unassigned tasks is obtained. The obtained task is assigned
to the then minimum utilized processor.

The Procedure
We present the step by step procedure of the Decreasing
Utilization Balancing algorithm used in our experiments:

1. If all the tasks are assigned go to step 6, otherwise go to
step 2.

2. Obtain the task with maximum utilization among the
unassigned tasks and call it Tmax.

3. Obtain the processor with minimum utilization, call it
Pmin.

4. Assign Tmax to Pmin.
5. Go to step 1.
6. End Procedure.

An example:
We run the Decreasing Utilization Balancing algorithm on
the example stated in the 2nd section.
The above procedure yields the following solution vector:
 a = (3,5,4,2,1,5,1,4,3,2,1).
The Processor utilizations are:

PU1 = TU7 + TU11 + TU5 = 0.825.
PU2 = TU10 + TU4 = 0.917.
PU3 = TU9 + TU1 = 0.927.
PU4 = TU8 + TU3 = 0.913.
PU5 = TU6 + TU2 = 0.862.

The objective function value, ƒobj (a) = 0.181.

4. THE GROUPING GENETIC ALGORITHM
The potential of Genetic Algorithms to yield good solutions,
even for hard optimization problems, has been demonstrated
by various applications. A recently developed area in the GA
research is the Grouping Genetic Algorithm (GGA). The
GGA is a GA heavily modified to suit the structure of
grouping problems. Those are the problems where the aim is
to find a good partition of a set or to group together the
members of the set. The GGA differs from the classic GA in
the two important ways. Firstly, a specific encoding scheme
is used so that the relevant structures of grouping problems
become the genes of the chromosomes. Secondly, special
genetic operators are used to suit the new encoding scheme.
Both of these aspects avoid the weakness of the classic GAs
applied to grouping problems [4].

In the Task Assignment problem, the aim is to find a good
partition of the task set, so that each partition can be
assigned to a unique processor. Here the number of
partitions is limited by the number of processors in the
system and the sum utilization of each partition should be
less than one. We recognize the Task Assignment problem
as a grouping problem and hence apply GGA to solve the
Task Assignment problem.

A. The Encoding scheme
Neither the standard nor the ordering genetic operators are
suitable for the grouping problems [5]. The simple
chromosomes (in classic GAs) are item oriented, instead of
being group oriented. Since the cost function of a grouping
problem is defined in terms of the groups, the group entity
should be captured in the chromosome. Therefore a two
chromosome encoding was suggested in [4]. The first
chromosome (item chromosome) will be the simple

chromosome (group chromosome) is made up of groups.
Now the genetic operators are applied on the group
chromosome and the item chromosome and the item
chromosome is updated accordingly, after each operation.
For the Task Assignment problem the item chromosome is
the task chromosome, each gene of the task chromosome
represents the processor to which the particular
corresponding task is assigned to. The length of the task
chromosome is governed by the number of tasks in the
system. Each gene in the group chromosome represents a
processor. The length of the group chromosome is limited by
the number of processors in the system.

B The Crossover Operator
A crossover operator should produce an offspring out of two
parents in such a way that the resulting offspring inherits the
meaningful information from both the parents to the
maximum possible extent. In a GGA the crossover is applied
on the group chromosome.
The GGA crossover proceeds as follows:

1. Select at random two crossing sites, delimiting the
crossing section, in each of the two parents.

2. Inject the contents of the crossing section of the
first parent at the first crossing site of the second
parent.

3. Eliminate all items now occurring twice from the
groups they were members of in the second parent.

4. If necessary, adapt the resulting groups, according
to the hard constraints of the problem and the cost
function to optimize. At this stage, local problem
dependent heuristics can be applied.

5. Apply the points 2 through 4 to the two parents
with their roles interchanged in order to generate
the second child.

A more complete explanation of the crossover operator may
be found in [5].

C. The Mutation Operator
The mutation operator is operated over the group
chromosome, where a randomly selected group is eliminated
and a few items are removed from each of the remaining
groups and a new group is then formed using any local
problem dependent heuristic. For the Task assignment
problem we use the Decreasing Utilization Balancing
heuristic as the local problem dependent heuristic.

D. The Inversion Operator
A segment in the group chromosome is selected at random
and the order of genes in that is reversed that is inverted.

E. The GGA Procedure
We present the GGA procedure used in our experiments.

1. Generate at random an initial population of
POPSIZE individuals.

2. Evaluate each individual according to the objective
function to optimize. If the current generation
number is equal to MAXGEN terminate.

3. Use tournament selection to select first Nc
individuals and perform crossover over them,

replace the last Nc individuals with the new off
springs.

4. Mutate NM individuals selected at random from the
current population.

5. Apply the inversion operator to NI randomly
selected individuals from the current population. At
this point, one generation has been completed and a
new population has been created.

6. Go to step 2.
Where the POPSIZE stands for the population size in each
generation and MAXGEN stands for the maximum number
of generators for each GA run.

F. The Cost Function
Two conditions need to be met for a successful GA, namely,

1. A GA should propagate those individuals (groups)
that define promising regions of the search space
throughout the population. This will ensure an
increased rate of sampling of the promising regions,
according to the Schema Theorem [6].

2. A GA should ensure that the individuals (groups)
representing points of the search space that are in
promising regions are also recognized as such, i.e.
serve as parents in the crossover. The crossover can
then propagate the high-quality individuals
(groups) they contain.

For the Task Assignment problem, according to the
objective function, the processors with load equal (or nearly
equal) to the average define the promising regions of the
search space.
Where average is given by,
 Avg = ∑ (TUi) ÷ M.
The first condition is thus met by casting groups (i.e.
processors) as genes and applying crossover over the group
chromosomes, hence transmitting groups rather than
items(i.e. tasks). In order to meet the second condition, our
cost function of the GA should be able to distinguish those
individuals (i.e. processors) which have load equal (or
nearly equal) to that of the average from others, since the
former are the promising individuals. Consider two different
solutions of the TA problem with two processors:
Solution 1:

PU1 = Avg. + 0.1
PU2 = Avg. + 0.1

Solution 2:
PU1 = Avg. + 0.2
PU2 = Avg.

Both the solutions score the same in terms of the objective
function of the TA problem. However, the second solution
has a promising individual (PU2). Hence we need to have the
second solution participate in the crossover more often than
the former that is it should score more than the former, in
terms of the cost function.
Consequently, we adapt the following the cost function:
ƒcost(a) =∑ √ (|PUmean - PUi |), for all i belonging to [1, M].
Where,
 PUmean = (PUsum) ÷ M, with
 PUsum = ∑ PUi, for all i belonging to [1, M].

The cost function, clearly, yields a lower value for the 2nd
solution. Hence, the 2nd solution is preferred more than the
1st solution.

5. EXPERIMENTS AND RESULTS

A. Experimental Setup
We performed three sets of experiments. In the first set
(Under load condition set) the sum of the utilizations of all
tasks is less than the number of processors. In the second set
(Just load condition set) the sum of the utilizations of all
tasks is exactly equal to the number of processors. In the
third set (Over load condition set) the sum of the utilizations
of all tasks is slightly more than the number of processors.
Processors may be slightly overloaded for the latter two sets;
we designed these two experimental sets to observe how
equally each heuristic would overload the processors (if
overloading is allowed) in these conditions. Hence for the
latter two sets, we dropped the hard constraint that each
processor load should be less than one. In each of the three
sets we varied the number of processors from 3 to 15. Each
processor case was simulated for 10 different sets of 100
tasks each and the objective function values obtained are
averaged to obtain the final objective function value. Each
set of 100 tasks was obtained by generating 100 random
floating point numbers each corresponding to the utilization
of a task. The performance of the four heuristics discussed in
the 2nd section and that of the GGA was compared in terms
of the objective function value of the TA problem.
We performed the GGA experiments using a population size
of 50 and tournament of size two as the selection strategy.
The number of crossovers made in the formation is about 24.
The number of mutations is about 20 and the number of
inversions is about 5. The total number of objective function
evaluations performed before obtaining the objective
function value for each processor case (for each of 3 to 15)
is (MAXGEN * POPSIZE * NUMBER_OF_TASK_SETS)
100*50*10, which is 50,000.

B. Experimental Results
We plotted the objective function value versus the number
of processors for the four heuristics and the GGA. Figure 1,
shows the plot for Under-Load case. Figure 2 and 3 show
the plots for Just-Load and Over-Load cases
respectively.

Figure 1: ƒobj versus Number of processors in the system,
with Under-Load conditions.

Figure 2: ƒobj versus Number of processors in the system,
with Just-Load conditions.

Figure 3: ƒobj versus Number of processors in the system,
with Over-Load conditions.

As the plots depict, the GGA performs better than the two
heuristics.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have applied the popular GGA paradigm to
solve the Task Assignment for a hard real time system. We
have compared the performance of the GGA with four well
known task assignment heuristics through simulations. We
found that the GGA performs better than the four heuristic
algorithms.
In the task assignment problem addressed in this paper, we
ignored the failures in the system. However, failures do
occur in hard real time systems. Fault-tolerance is an
important issue in hard real time systems due to the critical
nature of the supported tasks. The next step in this research
is to study the Fault-Tolerant scheduling problem in hard
real time systems.

7. REFERENCES

[1] D. Stinson, An Introduction to the Design and

Analysis of Algorithms, The Charles Babbage research
center, Canada, 2nd Edition, 1987.

[2] M. R. Garey and D. S. Johnson, Computers and
 Intractability: a Guide to the Theory of NP-
 Completeness. W. H. Freeman, Nov. 1979.

[3] B. Wilkinson and M. Allen, Parallel Programming:
 Techniques and Applications using Networked and
 Parallel Computers, Prentice Hall, 1999.

[4] E. Falkenauer, Genetic Algorithms and Grouping
 Problems, John Wiley and Sons Inc., 1st Edition, 1998.

[5] E. Falkenauer, “A hybrid Genetic Algorithm for Bin
 Packing”, Journal of Heuristics, 1996, pp 2: 5-30.

[6] D. E. Goldberg, Genetic Algorithms in search,
 optimization and Machine Learning, Pearson
 Education Asia, 2000.

[7] J. W. S. Liu, Real Time Systems, Pearson Education
 Asia, 2000.

	INTRODUCTION
	THE TASK ASSIGNMENT PROBLEM
	STATIC TASK ASSIGNMENT HEURISTICS
	THE GROUPING GENETIC ALGORITHM
	EXPERIMENTS AND RESULTS
	CONCLUDING REMARKS AND FUTURE WORK
	REFERENCES

