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Craig Reynolds(1987) showed that a realistic bird flock could be programmed
by implementing three simple rules: match your neighbors’velocity, steer for
the perceived center of the flock, and avoid collisions.

Reynolds, C.W. (1987). Flocks, herds, and schools: A distribution behavioral
model. Computer Graphics, 21, 25-34.

J. Kennedy and R. C. Eberhart, Particle Swarm Optimization. Proc. of IEEE
International Conference on Neural Network, Piscataway, NJ. Pp.. 1942-1948
(1995).

R. C. Eberhart, and J. Kennedy, A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micromachine and
Human Science, Nagoya, Japan. pp. 39-43, 1995.



•Scattering local searches (stochastic search)
•Global Information (population based search algorithm)
•Iterative Evolution (the changes to a particle within the swarm

are influenced by the experience, or knowledge, of its
neighbors.)



Population-based search algorithm based on the simulation of
the social behavior of birds within a flock

Particle Swarm optimization (PSO): In PSO, individuals
(potential solutions) are referred as a particles which flown through
hyperdimensional search space. Changes to the position of particles
within the search space are based on the social-psychological
tendency of individuals to emulate the success of other individuals.
The change to a particle within the swarm are therefore influenced
by the experience, or knowledge, of its neighbors



•A swarm consists of a set of particles, and each particle
represents a potential solution.

• Particles fly through the hyperspace, where the position of each
particle is changed according to its own experience and that of
its neighbors.

• The velocity vector derives the optimization process and
reflects the social exchanged information.
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coordinates of particle i at time step t



particle i individual best

global bestlocal best

Different PSO algorithms are different in the extend of the
social information exchange.



Particle Swarm Optimization (PSO) is a population-based
stochastic optimization method proposed by James Kennedy
and R. C. Eberhart in 1995. It is motivated by social behavior
of organisms such as bird flocking and fish schooling. In the
PSO algorithm, the potential solutions called particles, are
flown in the problem hyperspace. Change of position of a
particle is called velocity. The particle changes their position
with time. During flight, particle’s velocity is stochastically
accelerated toward its previous best position and toward a
neighborhood best solution. POS has been successfully applied
to solve various optimization problems, artificial neural
network training, fuzzy system control, and others.
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•Kennedy and Eberhart 1995 aim to discover the patterns that
govern the ability of birds to fly synchronously, and to
suddenly change the direction with a regrouping in an optimal
formation.

J. Kennedy and R.C. Eberhart, Particle Swarm Optimization, Proceedings of the
IEEE International Conference on Neural Networks, Vol.4, pp. 1942-1948, 1995

. Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory.
Proceedings of the Sixth International Symposium on Micromachine and Human
Science, Nagoya, Japan. pp. 39-43, 1995

• a population-based search algorithm

• based on the simulation of the social behavior of birds within a
flock.

• the changes to a particle within the swarm are influenced by the
experience, or knowledge, of its neighbors.



Each particle compares its current position to its own best position, pbest,
only. No information from other particles is used.

Individual Best Algorithm:



Different PSO algorithms are different in the extend of the social information
exchange.

Individual Best Algorithm:
Each particle compares its current position to its own best position, pbest, only.
No information from other particles is used.

1. (Initialization) At t = 0, the swam P(0) = { P1, P2, . . . , Pk }. For, i = 1, … k,

the position of particle Pi P(0) is random within the hyperspace.
Initial velocity of particle Pi is given for each i.
( We assume that the swarm has k particles. )

2. (Evaluation of Particles) Evaluate the performance of each particle, using
its current position is the fitness of particle i at time step t.

3. (Comparison) Compare the performance of each particles to its best
performance thus far:
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4. (Change the Velocity Vector) Change the velocity vector for each
particle as follows:

where is a positive random number.

5. (Move to a New Position) Move each particle to a new position.

6. Go to step 2, and repeat until convergence.
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New Position by Random Steps
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Each particle compares its current position to the entire swarm best
position, gbest.

Global Best Algorithm:



Global Best Algorithm:
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Global Best Algorithm:
Each particle compares its current position to the entire swarm best position,
gbest.

1. (Initialization) At t = 0, the swam P(0) = { P1, P2, . . . , Pk }. For, i = 1, … k,

the position of particle Pi P(0), is random within the hyperspace
and initial velocity of particle Pi is given for each i.
( We assume that the swarm has k particles. )

2. (Evaluation of Particles) Evaluate the performance of each particle, using
its current position is the fitness of particle i at time step t.

3. (Comparison) Compare the performance of each particles to its best
performance thus far:
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Compare the performance of each particles to the global best particle thus far:

4. (Change the Velocity Vector) Change the velocity vector for each
particle as follows:

where 1 an 2 are positive random numbers.

5. (Move to a New Position) Move each particle to a new position.

6. Go to step 2, and repeat until convergence.
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Particles are influenced by the lbest, the best position within their
neighborhood, as well as their own past experience.

Local Best Algorithm:



Local Best Algorithm:
In the local best algorithm, it reflects the circle neighborhood structure. Particles
are influenced by the lbest, the best position within their neighborhood, as well
as their own past experience. In Global Best Algorithm, only steps 3 and 4 are
changed by replacing gbest with lbest.

1. (Initialization) At t = 0, the swam P(0) = { P1, P2, . . . , Pk }. For, i = 1, … k,

the position of particle Pi P(0), is random within the hyperspace
and initial velocity of particle Pi is given for each i.
( We assume that the swarm has k particles. )

2. (Evaluation of Particles) Evaluate the performance of each particle, using
its current position is the fitness of particle i at time step t.

3. (Comparison) Compare the performance of each particles to its best
performance thus far:

If ( ( )) , then

( ) ( ( )) and ( ) ( ).i

i i

i pbest ii

F x t pbest

a pbest F x t b x x t



 


  

(0)ix


(0)iv


( ). ( ( ))i ix t F x t
 

generalization of Global Best Algorithm



Compare the performance of each particles to the local best particle thus far:

4. (Change the Velocity Vector) Change the velocity vector for each
particle as follows:

where 1 an 2 are positive random numbers.

5. (Move to a New Positon) Move each particle to a new position.

6. Go to step 2, and repeat until convergence.
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Remark:

(1) The random numbers 1 and 2 are defined as

1 = r1c1 and 2 = r2c2,

where r1, r2 U(0, 1), and c1 and c2 are acceleration constants. Kennedy

has studied the effect of the random variables 1 and 2 on the particle

trajectories, and asserted that c1 + c2 4 [Kennedy 1998]. If c1 + c2 > 4,

velocities and positions explode toward infinity.

J. Kennedy, The Behavior of Particles, in V.W. Porto, N. Saravana, D.
Waagen (ed.), Proceedings of the 7th Conference on Evolutionary
Programming, 1998, pp. 581-589.



(2) Fitness Calculation: Fitness function is to measure the performance of each

particle. Hence, a function is used to measure the closeness of the

corresponding solution to the optimum.

(3) Convergence: The following criterion may be used for termination of the

PSO algorithms.

(a) PSO algorithm is executed for a fixed number of iterations.

(b) PSO algorithm can be terminated if the velocity changes are close to

zero for all particles, in which case there will be no further changes in

particle positions.



Maximum velocity, A upper limit is placed on the velocity in all dimensions.

It prevents particles from moving too rapidly from one region in search

space to another.
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(4) Parameters: Standard PSO algorithm is influenced by the six system
parameters.
(a) dimension of the problem.
(b) number of particles in each iteration), k.
(c) upper limit of .
(d) upper limit on the maximum velocity.
(e) the neighborhood size.
(f) Inertia weights.



Inertia weight,

where is the inertia weight. It controls the influence of previous velocities on

the new velocity. Larger inertia weight cause larger exploration of the search

space, while smaller inertia weights focus the search on smaller region.

Typically, PSO is started with a large inertia weight, which is decreased over

time.
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Neighborhood size, The gbest version is the lbest with the entire swarm as the

neighborhood. The gbest is more susceptible to local optimum, since all

particles are pulled toward that solution. The smaller the neighborhood size,

and the more neighborhoods can be used, the less susceptible PSO is to local

optimum. A larger part of search space is traversed, and no one particle has an

influence on all particles. The larger the neighborhood size is, the slower the

algorithm converges.
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The “lbest”neighbohood with size = 2.

Neighborhood of #4 is { #3, #5}.

Neighborhood of #8 is { #7, #1}.



Particle #3 has found the best position so far in #4’s neighbohood. Thus, #4’s velocity
will be adjusted toward #3’s previous best position and #4’s own previous best
position.

1 432 65 7 8

0.33 0.72 0.54

lbest of #4



The “gbest”neighborhood. Particle #3 has found the best position so far in the entire
population, all other’s velocities will be attracted toward its previous best position.

gbest
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A Discrete Version of Global Best Algorithm: (Binary PSO)

1. (Initialization) At t = 0, the swam P(0) = { P1, P2, . . . , Pk }. For, i = 1, … k,

the position of particle Pi P(0), is random within the hyperspace
and initial velocity of particle Pi is given for each i.
( We assume that the swarm has k particles. )

2. (Evaluation of Particles) Evaluate the performance of each particle, using
its current position is the fitness of particle i at time step t.

3. (Comparison) Compare the performance of each particles to its best
performance thus far:
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Compare the performance of each particles to the global best particle thus far:

If ( ( )) , then
( ) ( ( )), ( ) ( ).

i

i gbest i

F x t gbest
a gbest F x t b x x t


 


  



4. (Change the Velocity Vector) Change the velocity vector for each
particle as follows:

where 1 an 2 are positive random numbers and

5. (Move to a New Position) Move each particle to a new position.

6. Go to step 2, and repeat until convergence.
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ijU(0, 1).


