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Abstract—Geometric particle swarm optimization (GPSO) alternative optimization algorithms for automatic pragra
is a recently introduced formal generalization of traditional  generation, and for taking PSO beyond mere optimization.
particle swarm optimization (PSO) that applies naturally to The only previous combination of PSO and GP we

both continuous and combinatorial spaces. In this paper we . .
apply GPSO to the space of genetic programs represented as !(now of works through representing the genetic programs

expression trees, uniting the paradigms of genetic programing  indirectly, and using a developmental process to grow the
and particle swarm optimization. The result is a particle svarm  phenotype (an expression tree) out of the genotype (a vector

flying through the space of genetic programs. We present iniél  of integers) [16]. This way, a standard PSO algorithm can

experimental results for our new algorithm. be used, but at the cost of the reconstitution of the search

space inherent to an indirect representation. In contrast,

the algorithm proposed in this paper works directly on
Particle Swarm Optimization (PSO) is a relatively recentlexpression trees, using a principled, almost representati

devised population-based stochastic global optimizasibn indepent, reformulation of the PSO algorithm.

gorithm [5]. PSO has many similarities with evolutionary The paper is structured as follows: first we describe the

algorithms, and has also proven to have robust performanggso algorithm. Then we present three different weighted

over a variety of difficult optimization problems. However,crossover operators for expression trees and discuss their

the original formulation of PSO requires the search spagg|ative merits. This is followed by the experimental sewcti

to be continuous and the individuals to be represented dhere we present results for PSP on two GP benchmarks:

vectors of real numbers. the Santa Fe Ant Trail and a symbolic regression problem.
There are a number of extensions of PSO to combinatorigle finish with a discussion of our results and directions for

spaces with various degrees of success [4] [1]. Howevd(ture research.

for every new solution representation, the PSO algorithm

needs to be rethought and adapted to the new representation.||. GEOMETRIC PARTICLE SWARM OPTIMIZATION

Alternatively, the problem domain has to be “shoehorned” ) . ,

into a representation that the PSO algorithms can handle! Order to theoretically derive the GPSO algorithm, we

natively. first need to define the concepts of geometric crossover and

Geometric Particle Swarm Optimization (GPSO) is a Vedpulti-parent geometric crossover, an_d use t_hese to (_jefém th
recently devised generic extension of PSO to almost al F‘C.ept ofacpnvex geom_etnc comblnatlon n am-etnc.space.
search space [9]. The requirements for GPSO to work in Is is done in the foIIQW|pg sections. The glgorlthm |_tself_
given space is that there is a way of measuring the distan\ﬁg ich can bq used quite independently of its derivation, is
between two points (solutions), that there is a mutatio und in section I-D.
operator that stochastically perturbs a point, and thatethe
is a weighted geometrical crossover operator that given tw'%'
parent points produces an offspring that lies between them. Geometric operators [10] are search operators defined in
a first application to GPSO to discrete spaces, it was shovgeometric terms using the notions of line segment and ball.
to perform satisfactorily on the problem of finding soluson These notions and the corresponding genetic operators are
to Sudoku puzzles [15]. well-defined once a notion of distance (metric) in the search

In this paper, we apply the GPSO algorithm to developingpace is defined.
computer programs, represented as expression trees. &Jsing In a metric spacés, d), a closed ballis a set of the form
genetic algorithm to evolve expression trees is usuallledal B(x;r) = {y € S|d(z,y) < r} wherez € S andr is
Genetic Programming (GP); similarly, we will refer to thea positive real number called the radius of the balllie
application of GPSO to expression trees as Particle Swarsegmentis a set of the formiz;y] = {z € Sld(z,z) +
Programming (PSP). The main purpose of this paper is t(z,y) = d(z,y)} wherexz,y € S are called extremes of
show that this is at all possible, thus opening up for usinthe segment. Metric ball and metric segment generalise the

|I. INTRODUCTION

Geometric crossover



familiar notions of ball and segment in the Euclidean space The weight of a point in a convex combination can be
to any metric space through distance redefinition. seen as a measure of relative linear attraction toward its
Definition 1: A binary operator is a geometric crossovercorresponding point versus attractions toward the othiettpo
under the metricd if each offspring lies in the segment of the combination. The closer the weight to one, the stronge
between its parents. the attraction to its corresponding point. The resultinghpo
The definition isrepresentation-independeand, therefore, of the convex combination can be seen as a weighted spatial
crossover is well-defined for any representation. Beingtasaverage and it is the equilibrium point of all the attraction
on the notion of metric segmentrossover is only function forces. The distance between the equilibrium point and a
of the metric dassociated with the search space. point of the convex combination is therefore a decreasing
This class of operators is really broad. For vectors dunction of the level of attraction (weight) of the point:
reals, various types of blend or line crossovers, box rdhe stronger the attraction, the smaller its distance to the
combinations, and discrete recombinations are geometgguilibrium point. This observation can be used to reinmetrp
crossovers [10]. For binary and multary strings, all homolthe weights of a convex combination in a metric space as
ogous crossovers are geometric [10] [12]. For permutatiorf®llows: y = wir1 + wers + waws With wy, we and w;
PMX, Cycle crossover, merge crossover and others aggeater than zero and;, + wy + w3z = 1 is generalized to
geometric crossovers [14]. For syntactic trees, the fawiily d(z1,y) ~ 1/w1, d(z2,y) ~ 1/we andd(zsz,y) ~ 1/ws.
homologous crossovers are geometric [11]. RecombinationsThis definition is formal and valid for all metric spaces
for several more complex representations are also geametout it is non-constructive. A convex combination for the

[12]. Euclidean space, not only defines a convex hull, but it tells
. . also how to reach all its points. For convex combinations
B. Multi-parent geometric crossover based on combinatorial spaces, how to reach the points

To extend the geometric crossover to the case of multiple the convex hull is not obvious. Weighted multi-parental
parents we need the notions of metric convex set and meti€ometric crossovers can be used to pick points specified by
convex hull. convex combinations in combinatorial spaces.

A set is a metric convex set if for every pair of points For the Euclidean space, a weighted three-parental
within the set, every point in the metric segment that joingeometric  crossover can be actually decomposed
them is also within the set. into two sequential applications of weighted two-

The metric convex hull of a set of poidt is the smallest geometric crossover:rAGX ((a, wa), (b, ws), (c,we)) =
metric convex set that includes all pointsih For example, GX((GX((a, 555-): (b, 5-%-)), wa + wp), (¢, we)).
in the Euclidean case, when the getcontains two points This formula can be used as a rule of thumb to build
the convex hull ofP is the segment whose extremes are thieighted three parental geometric crossovers from
points in P. When the seP’ contains three points the convexWeighted bi-parental geometric crossovers for any satutio
hull of P is the triangle whose vertices are the pointin representations.

Definition 2: (Multi-parental geometric crossover) In
a multi-parental geometric crossover, given parents D. The algorithm

p1,D2,---,Pn their offsprings are contained in the metric
convex hull of the parent€({p1,ps,...,pn}) for some _ _
metric d Algorithm 1 Standard PSO algorithm

Theorem 1:(Decomposable three-parent recombination): for all particle: do
Every multi-parental recombinatioRX (p;, p2, p3) that can 20 initialise positionz; € U[a, b] and velocityv; = 0
be decomposed as a sequence of 2-parental geometric end for
crossovers under the same metdéX and GX’, so that 4 While stop criteria not metio
RX (p1,p2,p3) = GX(GX'(p1,p2), p3), is a three-parental 5:  for all particlei do

geometric crossover 6: set personal best; as best position found so far
from the particle

C. Convex combination in metric spaces 7: set global bes§ as best position found so far from
the whole swarm

In order to define PSO for a generic metric space, we need

to extend the notion of convex combination to generic metric® end for .
spaces. o: for all parUcIez_do _ _
For the Euclidean space, @nvex combinatiois a lin-  1* update velocity using equation A
ear combination of vectors where all coefficients are non- vilt + 1) = wuilt) + diRa(g(t) — @i(t) +
negative and sum up to 1. It is called “convex combination”, 2R (24(t) n xi(t))_ .
since, when a vector represents a point in space, all pessibi* update position using equation
convex combinations (given the base vectors) will be within enfii ch)j 1) = x(t) +vi(t + 1)

the convex hull of the given points. In fact, the set of allt? )
convex combinations constitutes the convex hull. 13: end while




The main feature of the canonical PSO (Algorithm 1)A. Weighted subtree swap
that allows the motion of particles is the ability to perform The weighted subtree swap is a modification of the oper-

linear combln_atlons of points in the_ search space. To obtail}, - invented in [2] and popularized in [6], which is also the

a g_enerahs_atlon of PSQ_ to generic search spaces, we c{(ﬂhaps most intuitive and probably most commonly used

achieve this same ability by using multiple (9eometrich ssoyer operator for expression trees. In the unweighted

crossover operations. ) subtree swap, one node is chosen randomly in each parent
Theorem 2:In a PSO with no momentumu(= 0) and  ee (usually different nodes in the two trees), and the

where learning rates are such that+ ¢ < 1, the future g prees rooted at these nodes are exchanged. Weighted

position of each particle’ is within the triangle formed by ¢ piree swap chooses nodes at depths proportiofiaha),

its current positionr, its local best? and the swarm best \\here w is the weight of the second parent. To take an

g. Furthermore’ can be expressed without involving theeyample, if the first tree has depth 5, the second tree depth

particle’s velocity ase’ = (1 — wy — w3)a + w2k + w3g. 10, and the weight of the second tree is 0.2, the crossover
The generic Geometric PSO algorithm is illustrated i"point is chosen (proportionally to — 0.2 = 0.8) at depth
Algorithm 2. 4 in the first tree and depth 8 in the second tree. The only
offspring that is returned is the one based on the root from
Algorithm 2 Geometric PSO algorithm the first tree.
1: for all particle: do As subtree swap was proved to be non-geometric in [13],
2: initialise positionz; at random in the search space this crossover does not strictly satisfy the requiremesit$ |
3: end for out in the definition of GPSO, but is included because of its
4: while stop criteria not metlo simplicity.
5. for all particlei do
6: set personal best; as best position found so far by B. Homologous crossover and one-point crossover
the particle The common region is the largest rooted region where
7 set global besy as best position found so far by two parent trees have the same topology. In homologous
the whole swarm crossover [7] parent trees are aligned at the root and recom-
8. end for bined using a crossover mask over the common region. If
9. for all particlei do a node belongs to the boundary of the common region and
10: update position using a randomized convex combis a function then the entire sub-tree rooted in that node is
nation swapped with it. One special case of homologous crossover
z; = CX((w5,w), (g, 01), (i, ¢2)) is one-point crossover in which a common crossover point is
11 mutatex; picked randomly from the nodes belonging to the common
12:  end for region and then the two sub-trees rooted at the crossover
13: end while point are swapped.

In [3] an edit distance specific to syntactic trees, strudtur

This differs from the standard PSO (Algorithm 1) in thatdistance, was defined. Two trees are brought to the same
there is no explicit velocity, the equation of position ufela tree structure by adding null nodes to each tree. The cost

is the convex combination(X), there is mutation and the Of changing one node into another can be specified for each
parameterss, ¢1, and¢, are positive and sum up to one. Pair of nodes or for classes of nodes. The differences near th

root have more weight. The normalized structural hamming
distance (SHD) for trees [11] is a variation of the structura
distance.

The hyperschema [7] associated with two trees is the tree

As detailed in the above section, the GPSO algorithm restructure that has the topology of the common region of the
lies on a weighted crossover operator, which must be definédo trees; its nodes are '=" when two matched nodes differ
separately for each type of search space. As far as we amethe content, or '#' replacing two subtrees whose roots are
aware, no studies on weighted crossover for expressios trematched but their arities differ, or any other content when
have so far been published. We have therefore modified thritgeis the same in both matched nodes. Figure 1 illustrates
previously well-known crossover operators, two of whichat the top, two parent trees P1 and P2; at the bottom left,
are geometric, to create three different weighted crossoviheir associated hyperschema H(P1,P2) at the bottom right,
operators for expression trees. They all operate accordia§j the potential offspring applying homologous crossover
to the simple assumption that the relative influence of twto parents P1 and P2 (the part in bold means alternative
parent trees on an offspring is proportional to the relativeontent of the tree; in this case there are 5 independentbina
number of nodes they contribute to the offspring. In thalternatives, resulting in 32 possible offspring). The SHD
descriptions below, when we choose a node randomly amodistance between two trees is a function of the hyperschema
a set of nodes, all nodes in the set have the same probabiltysociated with the two trees and not directly of the twostree
of being chosen. (see figure 2).

IIl. WEIGHTED CROSSOVER OPERATORS FOR
EXPRESSION TREES
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distanceE(SHD(P;,0)) is a linear combination with pos-
itive weights of the expected contributions to the distance
SHD(Py,0). Since all these contributions are decreasing
functions of Wy, also any linear combination with positive
weights is a decreasing function@f,. So, E(SHD(P, 0))

is a decreasing function d¥7;. [ |

D. Weighted one-point crossover

Definition 4: (Weighted one-point crossover)

Let A and B be two parent treesd is the donor, from
which a subtree is taken, arigl is the recipient to which the
subtree is given. Only one offspring is produced, which
consists of the parenB with the new subtree taken from
A. Letw, andw, be the weights associated with and B,
such thatw, + w, = 1. The crossover point is chosen in a
way that the smaller the value afy,, the closer to the root
the crossover point.

In the following we discuss the coherence between dis-
tances and weights for one-point crossover.

Let D be the donor tree anf be the recipient tree, with
d<PLP2)=g non-negative weights,; andw, such thatwg +w, = 1. We

can interpret the weights of the parents as the relative con-
tribution of genetic material of the parents in the offsgrin
So, in the offspring tree witlv nodes,N; = wy * N has to
come from parenD and N, = w, * N has to come from
parentR.

A rough way of approximating this would be using the
weights to determine the depths of the trees at which to
perform the crossover cut. For the donor tree, the larger the
weight wy the closer to the root the crossover cut has to
be. In this way the size of the subtree extracted frbrmis
roughly an increasing function of the weight;. For the

Theorem 3:Homologous ~ crossover ~ and one_poimrecipier_n tree, it has to be the other way around, the smaller
crossover are geometric under SHD. th_e weightw, _the closer to the root the crossover cut. In

this way the size of the subtree removed fréivis roughly
C. Weighted homologous crossover a decreasing function of the weight.. So, the part of the

Definition 3: (Weighted homologous crossover). L&  tree R that is going to be part of the offspring is roughly
and P, two parents trees, ant¥; and W, their weights, an increasing function of the,. Sincew, = 1 — wq, the
respectively. Their offspring is generated using a crossoverprevious rule can be restated as follows. For both tiBes
mask on the common region ¢4 and P, such as for each and R, the larger the weighty; of the donor tree the closer
position of the common regior?, appears in the crossover to the root the crossover cut has to be.
mask with probabilityi;, and P, with probability 1. We could then extend the weighted recombination of

Theorem 4:(Coherence between weights and distances)wo trees to the weighted recombination of three trees by
The expected distancds(SHD(Py,0)), E(SHD(P,,0)) doing two sequential weighted recombinations and using the
from the parents?; and P, to their offspringO are decreas- formula proposed in the original geometric PSO paper to
ing functions of the weight$l’; andW,, respectively. So, if pass from the weights of a combination of 3 points to the
Wi < Wy thenE(SHD(P1,0)) > E(SHD(P,, 0)). weights of the equivalent two sequential combinations af tw

Proof: points.

For each position of the common region Bf and P, However, because of the asymmetry of treatment of parent
the expected contribution to the distan§é/D(P;,0) of A andB the same number assigneditg andwy, is likely to
that specific position is a decreasing function of the weightave a different impact on the equilibrium point. To remove
Wi. This is becausdV; is the probability that at that this potential bias, we assign randomly the roles of donor
position the offspringO equals the parenf’;. So, the and recipient every time to the objects to recombine. So, for
higher this probability, the smaller the expected contidlu example, when one recombines global best and particle best,
to the distance at that position. From the linearity of theve pick at random the role to assign to these two objects.
expectation and from the definition &fH D, the expected We do not fix, for example, global best as donor.

Fig. 1. Hyperschema and offspring set

Fig. 2. Hyperschema and structural distance



E. Small common regions and fixed-size populations number of different settings for the three main parameters,

During initial testing of the operators, we discovered thd/ith random search and genetic programming. For each
problem that for two arbitrarily chosen trees in a populatio algorithm, what counted was the maximum fitness resulting

the common region is likely to be very small. This leads to aiifom allowing the algorithm to make 50000 tree evaluations,

crossovers based on the common region choosing crossogéfraged over a number of separate runs. In all cases, trees
points close to the root, and thus that the weights assaciatd€"® initialized using uniform growth to depth 7, so that

with the crossover have little effect, and that most crossov@!l trees of the initial population of all experiments were
operations become very destructive. complete and had 64 terminals and 64 nonterminals. We used

One way of dealing with this problem is to ensure thathe lattice neighbourhood topology, which has previously

all trees in the population have the same size and topolo&?\?vn showg to work v_veII Wi;[ch GZSO [15]. h. The first f
(they can of course still have different nodes). The easiest''© tested two versions of random search. The first form

way to do this is to require that all nonterminals have thg} raf‘dom searchir(itialization Se?rcb CO.nSiSted in Si”.‘p.'Y
same arity, and then design the initialization and mutatio?l“:"""tmg 50000 different trees using uniform growth ititia

operators so as to ensure that all trees always are conyplet tion, efvarlluatlng themTrz?nd selecting th; f(')%he.St fltnesz
expanded up to a certain depth, i.e. that all nodes at dept?ls any o t ese t_rees. IS was repeat_e ) tlm_es, an
up to the maximum depth are nonterminals and all nodes gte meanhighest fitnessind standard deviation the highest
the maximum depth are terminals itnesses was recorded. (Note that this is the mean of the

A possible problem with the fixed-size approach is that nct00 trials, not the mean of the 50000 initializations, which

all good solutions to a particular problem using a partir:ulaWas always c_onS|derany Iower._) The SeC.OT‘P' f.orm of random
search ffutation searchstarts with a tree initialized through

function set might be expressible using this particulae tre™*" . )
topology, and that even if they are, constraining the poé,lnlform growth, and then applies 50000 Macro mutations to

ulation to fixed-size trees might alter the structure of théhIS tr_ee. Mean highest fitness over 100 repetmons_of_ this
search space in unforeseen ways. The effects of the fixe xperiment was recorded, as was the standard deviation of

size constraint on different search spaces will, as we see € highest f|tne§ses. L .
most easily be estimated through direct experiments. . For a comparison, we chose the.determ|n|.st|c (;rowd|ng
Alternatively, a way of making all functions have the|mplem.er_1te.1t|on of g_enetlc programming as defined N [8]. In
same arity without altering the semantic of the functiorgeterm'n'snc. crowding, _two eIemgnts of th?. populatlon_ are
(but potentially inserting a lot of neutrality in the search randomly paired and (W'th a certain prpbab|||ty) recombine
is to consider all functions to have the arity of the functio to produce two offsprings. The offsprings are mutated and

with the largest arity in the set of functionals and discagdi Qhaerr;;qtal;;etrh;hehea\\//aelu:nl(JJQI, g;e%/i rr?eprla]fi:ten etz:”arpeoztisi';gi:j
the extra inputs due to the larger arity of the function. FoP y d 9 ’

example, if you have a the functional sgt, «, sin} the otherwise. In our implementation the SHD distance was used

masimur sty 2 (hih s the ary o bt and ). 5 /AL e slarly betueen parent ond ofsrng, e
The arity ofsin is 1. We can then artificially extend then P

. . L ] form together with this algorithm. For each crossover type,
function to arity two by definingsin(x,y) = sin(x) so the . . :
. L . . - the mutation and crossover rate were varied respectively
input y is simply discarded. In this spirit, we could allow

within the set{0.3,0.6,1} and{0.1,0.3,0.6,1}.

for constants occuring not only at the bottom of the tree, _ . ! . .
but anywhere in the tree by defining the constant function Being the subject of this paper, the geometric PSO was the

. algorithm whose parameters we tested most extensively. For
k(x,y) = k wherek is a real number for example. So, the . : .
X . each problem domain, all three of the above defined weighted
arguments of a constant function are do not affect its owtput
. crossover operators were tested, and for each crossover
all. This would allow us to express any tree whose topolog . :
. . ) ; . ~gperator a range of settings for the three main parameters
is covered by the fixed size tree considered, without forcin

all solutions of the problem to necessarily be full treesisTh gf the GPSO algorithm were tried. Settings(of, 0.2, 0.4,

. . . . 0.6, 0.8 and 1.0 were tried for both the inertia and the
approach was not taken in the experiments in this paper emory parameters; for the sociality parameter, the ggettin
here we have decided to restrict ourselves to functions (r)? yp ’ yp ’ *

i : . was1 —inertia — memory (negative values of the sociality
arity two, allowing terminals only as leaves of the tree. ! : :
parameter led to that configuration not being tested). The

IV. EXPERIMENTS mutation ratio was fixed ai.1. For each configuration, 20
) ) ) independent runs were made, and the average and standard
In all experiments, we used tfieegrowmutation, which  geviation of the highest fitnesses of the last update of each
randomly selects a point in the tree and re-grows the &g he runs were recorded. The runs had a population size of
from that point in the same way as the uniform |n|t|aI|zat|or100 and lasted for 500 updates (generations), meaning that

does, so that all branches reach maximum depth. This,.p run performed 50000 tree evaluations.
preserves the fixed size of the trees in the population (if

combined with homologous or one-point crossover). A. Santa Fe Ant Trail
For both problem domains, we compared GPSO, using The Santa Fe Ant Trail, a classic and rather hard GP
the three different weighted crossover operators and usmdeBenchmark problem, was introduced in [6]; we have no space



for a full description here. Basically the target is to steedistribution from the interval—1, 1]. If in the selected point
an ant along a trail in a grid world, eating all the foodthe absolute error between the true value of the function and
in a limited number of time steps. The minimum fitnesshe value returned by the individual under evaluation isdow
is 0 (no food eaten) and the maximum is 89 (all foodhan0.01, the pointis considered a hit, a miss otherwise. The
eaten). In the original formulation, the allowed nonteratin problems becomes a maximization one in which the fitness
were IfFoodAhead (evaluates its left child if there is foodf the individual is simply the total number of hits, its valu
immediately ahead of the agent, and its right otherwiseis therefore between 0 (no fitting at all) and 50 (good fitting)
Progn2 (evaluates both children in succession) and Progn31) Random searchUsing initialization search, the mean
(has three children, evaluates all of them in succession). highest fitness wad8 (standard deviation of.6). With
all experiments in this paper, the Progn3 nonterminal haautation search, the mean highest fithess was as igell
been eliminated in order to ensure that all nonterminalg hay2.5). The average fitness for randomly created trees was
the same arity, making fixed-size populations possiblehBotl.27 (2.7). None of the random search methods reached the
in the original formulation and in this paper, the terminall S maximum fitness.
consists of Left, Right and Move. 2) Genetic programming:The best configuration found
1) Random searchUsing initialization search, the meanfor the deterministic crowding algorithm with subtree swap
highest fitnessvas 57.7 (standard deviation 6.6). (The meaias where both mutation and crossover were set to 1; this
fitness of any particular randomly initialized tree was a@u resulted in an AHF 088.25 (standard deviatiof.95). With
1 or 2.) Using mutation search, the mean highest fitness wasmologous crossover the best configuration was mutation
54.1 (9.4). None of the random searches ever reached @ and crossover 1.0, which yielded an AHF3635 (6.2).
global optimum of 89. One-point crossover performed best with both mutation and
2) Genetic programmingWith subtree swap, the deter- crossover set to 1.0; AHB5.6 (10.08). Those were the only
ministic crowding algorithm worked best with mutation ratesettings that gave maximum fitness, twice in 20 repetitions.
1.0 and crossover rate 0.6, reaching an average highestrhe results obtained in [6] are better than those presented
fitness (AHF) of 76.7 (standard deviation 14.2). One-poinere, possibly due to the population size we used. However,
crossover, with mutation 0.3 and crossover 1.0, allowegh fairness of comparison we used the same population size
the algorithm to reach AHF 65.7 (12.6); using homolofor poth PSP and GP.
gous crossover, the best configuration was mutation 1.0 and3y Geometric PSOFor weighted subtree swap, the best
crossover 0.3, reaching fitness 66.1 (12.83). Global optim@nfiguration of parameters found was inertia 0.8, memory

were only reached in the experiments that used subtree swap and sociality 0.0; the AHF wa3.4 (standard deviation
3) Geometric PSOThe results of the GPSO runs were as; 6. For one-point crossover, the best configuration was in-

follows: For weighted subtree swap, the best configuratfon @5 g 2 memory 0.6 and sociality 0.2, yielding intenegly
parameters found was inertia 0.2, memory 0.4 and socialifife same AHF33.4 (6.1) which was obtained with subtree
0.4. Using this configuration, the AHF was 77.9 (standardyap Homologous crossover worked best with inertia 0.4,
deviation 10.5), and a global optimum was reached 4 t'm@ﬁemory 0.6 and sociality 0.2, with an AHES.55 (4.22).

out of 20. For homologous and one-point crossover resulfsy 5 few occasions, using subtree swap, global optima were
were worse. For one-point crossover, the best configuratiog,ched.

found was inertia 0.2, memory 0.6 and sociality 0.2, yiadin

AHF 60.1 (10.2) and reaching global optimum one time out V. CONCLUSION

of 20. For homologous crossover the best configuration was ) ) o )

inertia 0.2, memory 0.8 and sociality 0.0, bringing the AHF Geometric PSO is a generalization of the classical PSO

to 69.9 (9.5). to general metric spaces. In particular, it applies to com-
_ _ binatorial spaces. In this paper we have demonstrated the
B. Symbolic Regression application of the GPSO algorithm to the space of GP

The second benchmark, also a classic problem in the GRpression trees, inventing PSP. We believe this to be the
literature, is symbolic regression. The well known sextidirst algorithm to use PSO for directly represented expoessi
polynomial function trees. Our initial experiments show that it performs abaut a

6 4 9 well as a sophisticated genetic algorithm on two standard
y=z -2 += (D) penchmarks, though better results on these benchmarks can
was used in an experimental setup very similar to the orze found in the literature.
introduced in [6]. We have also defined and compared three weighted

As in the original formulation the only allowed functionalscrossover operators, with weighted subtree swap turning ou
are {+, —, *, %} while the terminals are the input or a to perform best. However, significant work remains in finding
constant value that is drawn (at the creation of the treef froout which operators work best for PSP, and on what sort of
a uniform distribution in the intervdl-1, 1]. All the functions landscapes PSP works best. In particular, for the common
used have the same arity (two), fulfiling the requirementegion-based crossover operators to work well, we need
for a fixed-size population discussed in IlI-E. The fithes$o find a way of maximizing common regions without the
is evaluated in 50 points randomly drawn with uniformadverse effects of fixed-size populations.



As the two classic benchmarks have been subject to
much experimentation in numerous papers over the years, it
would be preposterous to think that we would beat all other
algorithms with the first implementation of a new algorithm.
Maybe further refinement of the operators will lead to a
PSP algorithm that excels in these benchmarks, but it is also
possible that PSO is a less efficient algorithm for GP than
the GA's currently employed are; this in itself would be an
interesting result and merit further analysis. In any cése,
point of this paper is not beat the benchmarks but the proof
of conecpt. Above, we provide an initial implementationttha
shows that it is possible to use a theoretically sound form of
PSO, operating directly in the space of expression trees, fo
GP. We believe that these results open up both for the use
of particle swarm optimization in a variety of new spaces,
and for the development of a family of new algorithms to
complement the genetic algorithm in GP.
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