
Geometric PSO + GP =

Particle Swarm Programming

Julian Togelius
IDSIA

USI/SUPSI, Galleria 2,
6928 Manno-Lugano, Switzerland

julian@idsia.ch

Renzo De Nardi
Dept. Computing and Electronic Systems

University of Essex
Colchester CO4 3SQ, UK

rdenar@essex.ac.uk

Alberto Moraglio
Dept. Informatics Engineering

University of Coimbra
3030-290 Coimbra, Portugal

moraglio@dei.uc.pt

Abstract—Geometric particle swarm optimization (GPSO)
is a recently introduced formal generalization of traditional
particle swarm optimization (PSO) that applies naturally to
both continuous and combinatorial spaces. In this paper we
apply GPSO to the space of genetic programs represented as
expression trees, uniting the paradigms of genetic programming
and particle swarm optimization. The result is a particle swarm
flying through the space of genetic programs. We present initial
experimental results for our new algorithm.

I. I NTRODUCTION

Particle Swarm Optimization (PSO) is a relatively recently
devised population-based stochastic global optimizational-
gorithm [5]. PSO has many similarities with evolutionary
algorithms, and has also proven to have robust performance
over a variety of difficult optimization problems. However,
the original formulation of PSO requires the search space
to be continuous and the individuals to be represented as
vectors of real numbers.

There are a number of extensions of PSO to combinatorial
spaces with various degrees of success [4] [1]. However,
for every new solution representation, the PSO algorithm
needs to be rethought and adapted to the new representation.
Alternatively, the problem domain has to be “shoehorned”
into a representation that the PSO algorithms can handle
natively.

Geometric Particle Swarm Optimization (GPSO) is a very
recently devised generic extension of PSO to almost any
search space [9]. The requirements for GPSO to work in a
given space is that there is a way of measuring the distance
between two points (solutions), that there is a mutation
operator that stochastically perturbs a point, and that there
is a weighted geometrical crossover operator that given two
parent points produces an offspring that lies between them.In
a first application to GPSO to discrete spaces, it was shown
to perform satisfactorily on the problem of finding solutions
to Sudoku puzzles [15].

In this paper, we apply the GPSO algorithm to developing
computer programs, represented as expression trees. Usinga
genetic algorithm to evolve expression trees is usually called
Genetic Programming (GP); similarly, we will refer to the
application of GPSO to expression trees as Particle Swarm
Programming (PSP). The main purpose of this paper is to
show that this is at all possible, thus opening up for using

alternative optimization algorithms for automatic program
generation, and for taking PSO beyond mere optimization.

The only previous combination of PSO and GP we
know of works through representing the genetic programs
indirectly, and using a developmental process to grow the
phenotype (an expression tree) out of the genotype (a vector
of integers) [16]. This way, a standard PSO algorithm can
be used, but at the cost of the reconstitution of the search
space inherent to an indirect representation. In contrast,
the algorithm proposed in this paper works directly on
expression trees, using a principled, almost representation-
indepent, reformulation of the PSO algorithm.

The paper is structured as follows: first we describe the
GPSO algorithm. Then we present three different weighted
crossover operators for expression trees and discuss their
relative merits. This is followed by the experimental section,
where we present results for PSP on two GP benchmarks:
the Santa Fe Ant Trail and a symbolic regression problem.
We finish with a discussion of our results and directions for
future research.

II. GEOMETRIC PARTICLE SWARM OPTIMIZATION

In order to theoretically derive the GPSO algorithm, we
first need to define the concepts of geometric crossover and
multi-parent geometric crossover, and use these to define the
concept of a convex geometric combination in a metric space.
This is done in the following sections. The algorithm itself,
which can be used quite independently of its derivation, is
found in section II-D.

A. Geometric crossover

Geometric operators [10] are search operators defined in
geometric terms using the notions of line segment and ball.
These notions and the corresponding genetic operators are
well-defined once a notion of distance (metric) in the search
space is defined.

In a metric space(S, d), a closed ballis a set of the form
B(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and r is
a positive real number called the radius of the ball. Aline
segmentis a set of the form[x; y] = {z ∈ S|d(x, z) +
d(z, y) = d(x, y)} wherex, y ∈ S are called extremes of
the segment. Metric ball and metric segment generalise the



familiar notions of ball and segment in the Euclidean space
to any metric space through distance redefinition.

Definition 1: A binary operator is a geometric crossover
under the metricd if each offspring lies in the segment
between its parents.
The definition isrepresentation-independentand, therefore,
crossover is well-defined for any representation. Being based
on the notion of metric segment,crossover is only function
of the metric dassociated with the search space.

This class of operators is really broad. For vectors of
reals, various types of blend or line crossovers, box re-
combinations, and discrete recombinations are geometric
crossovers [10]. For binary and multary strings, all homol-
ogous crossovers are geometric [10] [12]. For permutations,
PMX, Cycle crossover, merge crossover and others are
geometric crossovers [14]. For syntactic trees, the familyof
homologous crossovers are geometric [11]. Recombinations
for several more complex representations are also geometric
[12].

B. Multi-parent geometric crossover

To extend the geometric crossover to the case of multiple
parents we need the notions of metric convex set and metric
convex hull.

A set is a metric convex set if for every pair of points
within the set, every point in the metric segment that joins
them is also within the set.

The metric convex hull of a set of pointP is the smallest
metric convex set that includes all points inP . For example,
in the Euclidean case, when the setP contains two points
the convex hull ofP is the segment whose extremes are the
points inP . When the setP contains three points the convex
hull of P is the triangle whose vertices are the points inP .

Definition 2: (Multi-parental geometric crossover) In
a multi-parental geometric crossover, givenn parents
p1, p2, . . . , pn their offsprings are contained in the metric
convex hull of the parentsC({p1, p2, . . . , pn}) for some
metric d

Theorem 1:(Decomposable three-parent recombination)
Every multi-parental recombinationRX(p1, p2, p3) that can
be decomposed as a sequence of 2-parental geometric
crossovers under the same metric,GX and GX ′, so that
RX(p1, p2, p3) = GX(GX ′(p1, p2), p3), is a three-parental
geometric crossover

C. Convex combination in metric spaces

In order to define PSO for a generic metric space, we need
to extend the notion of convex combination to generic metric
spaces.

For the Euclidean space, aconvex combinationis a lin-
ear combination of vectors where all coefficients are non-
negative and sum up to 1. It is called “convex combination”,
since, when a vector represents a point in space, all possible
convex combinations (given the base vectors) will be within
the convex hull of the given points. In fact, the set of all
convex combinations constitutes the convex hull.

The weight of a point in a convex combination can be
seen as a measure of relative linear attraction toward its
corresponding point versus attractions toward the other points
of the combination. The closer the weight to one, the stronger
the attraction to its corresponding point. The resulting point
of the convex combination can be seen as a weighted spatial
average and it is the equilibrium point of all the attraction
forces. The distance between the equilibrium point and a
point of the convex combination is therefore a decreasing
function of the level of attraction (weight) of the point:
the stronger the attraction, the smaller its distance to the
equilibrium point. This observation can be used to reinterpret
the weights of a convex combination in a metric space as
follows: y = w1x1 + w2x2 + w3x3 with w1, w2 and w3

greater than zero andw1 + w2 + w3 = 1 is generalized to
d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 andd(x3, y) ∼ 1/w3.

This definition is formal and valid for all metric spaces
but it is non-constructive. A convex combination for the
Euclidean space, not only defines a convex hull, but it tells
also how to reach all its points. For convex combinations
based on combinatorial spaces, how to reach the points
in the convex hull is not obvious. Weighted multi-parental
geometric crossovers can be used to pick points specified by
convex combinations in combinatorial spaces.

For the Euclidean space, a weighted three-parental
geometric crossover can be actually decomposed
into two sequential applications of weighted two-
geometric crossover:∆GX((a, wa), (b, wb), (c, wc)) =
GX((GX((a, wa

wa+wb

), (b, wb

wa+wb

)), wa + wb), (c, wc)).
This formula can be used as a rule of thumb to build
weighted three parental geometric crossovers from
weighted bi-parental geometric crossovers for any solution
representations.

D. The algorithm

Algorithm 1 Standard PSO algorithm
1: for all particle i do
2: initialise positionxi ∈ U [a,b] and velocityvi = 0

3: end for
4: while stop criteria not metdo
5: for all particle i do
6: set personal best̂xi as best position found so far

from the particle
7: set global best̂g as best position found so far from

the whole swarm
8: end for
9: for all particle i do

10: update velocity using equation
vi(t + 1) = ωvi(t) + φ1R1(ĝ(t) − xi(t)) +
φ2R2(x̂i(t) − xi(t))

11: update position using equation
xi(t + 1) = xi(t) + vi(t + 1)

12: end for
13: end while



The main feature of the canonical PSO (Algorithm 1)
that allows the motion of particles is the ability to perform
linear combinations of points in the search space. To obtain
a generalisation of PSO to generic search spaces, we can
achieve this same ability by using multiple (geometric)
crossover operations.

Theorem 2:In a PSO with no momentum (ω = 0) and
where learning rates are such thatφ1 + φ2 < 1, the future
position of each particlex′ is within the triangle formed by
its current positionx, its local bestx̂ and the swarm best
ĝ. Furthermore,x′ can be expressed without involving the
particle’s velocity asx′ = (1 − w2 − w3)x + w2x̂ + w3ĝ.

The generic Geometric PSO algorithm is illustrated in
Algorithm 2.

Algorithm 2 Geometric PSO algorithm
1: for all particle i do
2: initialise positionxi at random in the search space
3: end for
4: while stop criteria not metdo
5: for all particle i do
6: set personal best̂xi as best position found so far by

the particle
7: set global best̂g as best position found so far by

the whole swarm
8: end for
9: for all particle i do

10: update position using a randomized convex combi-
nation
xi = CX((xi, ω), (ĝ, φ1), (x̂i, φ2))

11: mutatexi

12: end for
13: end while

This differs from the standard PSO (Algorithm 1) in that:
there is no explicit velocity, the equation of position update
is the convex combination (CX), there is mutation and the
parametersω, φ1, andφ2 are positive and sum up to one.

III. W EIGHTED CROSSOVER OPERATORS FOR

EXPRESSION TREES

As detailed in the above section, the GPSO algorithm re-
lies on a weighted crossover operator, which must be defined
separately for each type of search space. As far as we are
aware, no studies on weighted crossover for expression trees
have so far been published. We have therefore modified three
previously well-known crossover operators, two of which
are geometric, to create three different weighted crossover
operators for expression trees. They all operate according
to the simple assumption that the relative influence of two
parent trees on an offspring is proportional to the relative
number of nodes they contribute to the offspring. In the
descriptions below, when we choose a node randomly among
a set of nodes, all nodes in the set have the same probability
of being chosen.

A. Weighted subtree swap

The weighted subtree swap is a modification of the oper-
ator invented in [2] and popularized in [6], which is also the
perhaps most intuitive and probably most commonly used
crossover operator for expression trees. In the unweighted
subtree swap, one node is chosen randomly in each parent
tree (usually different nodes in the two trees), and the
subtrees rooted at these nodes are exchanged. Weighted
subtree swap chooses nodes at depths proportional to(1−w),
where w is the weight of the second parent. To take an
example, if the first tree has depth 5, the second tree depth
10, and the weight of the second tree is 0.2, the crossover
point is chosen (proportionally to1 − 0.2 = 0.8) at depth
4 in the first tree and depth 8 in the second tree. The only
offspring that is returned is the one based on the root from
the first tree.

As subtree swap was proved to be non-geometric in [13],
this crossover does not strictly satisfy the requirements laid
out in the definition of GPSO, but is included because of its
simplicity.

B. Homologous crossover and one-point crossover

The common region is the largest rooted region where
two parent trees have the same topology. In homologous
crossover [7] parent trees are aligned at the root and recom-
bined using a crossover mask over the common region. If
a node belongs to the boundary of the common region and
is a function then the entire sub-tree rooted in that node is
swapped with it. One special case of homologous crossover
is one-point crossover in which a common crossover point is
picked randomly from the nodes belonging to the common
region and then the two sub-trees rooted at the crossover
point are swapped.

In [3] an edit distance specific to syntactic trees, structural
distance, was defined. Two trees are brought to the same
tree structure by adding null nodes to each tree. The cost
of changing one node into another can be specified for each
pair of nodes or for classes of nodes. The differences near the
root have more weight. The normalized structural hamming
distance (SHD) for trees [11] is a variation of the structural
distance.

The hyperschema [7] associated with two trees is the tree
structure that has the topology of the common region of the
two trees; its nodes are ’=’ when two matched nodes differ
in the content, or ’#’ replacing two subtrees whose roots are
matched but their arities differ, or any other content when
it is the same in both matched nodes. Figure 1 illustrates
at the top, two parent trees P1 and P2; at the bottom left,
their associated hyperschema H(P1,P2) at the bottom right,
all the potential offspring applying homologous crossover
to parents P1 and P2 (the part in bold means alternative
content of the tree; in this case there are 5 independent binary
alternatives, resulting in 32 possible offspring). The SHD
distance between two trees is a function of the hyperschema
associated with the two trees and not directly of the two trees
(see figure 2).



Fig. 1. Hyperschema and offspring set

Fig. 2. Hyperschema and structural distance

Theorem 3:Homologous crossover and one-point
crossover are geometric under SHD.

C. Weighted homologous crossover

Definition 3: (Weighted homologous crossover). LetP1

and P2 two parents trees, andW1 and W2 their weights,
respectively. Their offspringO is generated using a crossover
mask on the common region ofP1 andP2 such as for each
position of the common region,P1 appears in the crossover
mask with probabilityW1, andP2 with probabilityW2.

Theorem 4:(Coherence between weights and distances).
The expected distancesE(SHD(P1, O)), E(SHD(P2, O))
from the parentsP1 andP2 to their offspringO are decreas-
ing functions of the weightsW1 andW2, respectively. So, if
W1 < W2 thenE(SHD(P1, O)) > E(SHD(P2, O)).

Proof:
For each position of the common region ofP1 and P2,

the expected contribution to the distanceSHD(P1, O) of
that specific position is a decreasing function of the weight
W1. This is becauseW1 is the probability that at that
position the offspringO equals the parentP1. So, the
higher this probability, the smaller the expected contribution
to the distance at that position. From the linearity of the
expectation and from the definition ofSHD, the expected

distanceE(SHD(P1, O)) is a linear combination with pos-
itive weights of the expected contributions to the distance
SHD(P1, O). Since all these contributions are decreasing
functions ofW1, also any linear combination with positive
weights is a decreasing function ofW1. So,E(SHD(P1, O))
is a decreasing function ofW1.

D. Weighted one-point crossover

Definition 4: (Weighted one-point crossover)
Let A and B be two parent trees.A is the donor, from

which a subtree is taken, andB is the recipient to which the
subtree is given. Only one offspringO is produced, which
consists of the parentB with the new subtree taken from
A. Let wa andwb be the weights associated withA andB,
such thatwa + wb = 1. The crossover point is chosen in a
way that the smaller the value ofwb, the closer to the root
the crossover point.

In the following we discuss the coherence between dis-
tances and weights for one-point crossover.

Let D be the donor tree andR be the recipient tree, with
non-negative weightswd andwr such thatwd +wr = 1. We
can interpret the weights of the parents as the relative con-
tribution of genetic material of the parents in the offspring.
So, in the offspring tree withN nodes,Nd = wd ∗N has to
come from parentD and Nr = wr ∗ N has to come from
parentR.

A rough way of approximating this would be using the
weights to determine the depths of the trees at which to
perform the crossover cut. For the donor tree, the larger the
weight wd the closer to the root the crossover cut has to
be. In this way the size of the subtree extracted fromD is
roughly an increasing function of the weightwd. For the
recipient tree, it has to be the other way around, the smaller
the weightwr the closer to the root the crossover cut. In
this way the size of the subtree removed fromR is roughly
a decreasing function of the weightwr. So, the part of the
tree R that is going to be part of the offspring is roughly
an increasing function of thewr. Sincewr = 1 − wd, the
previous rule can be restated as follows. For both treesD
andR, the larger the weightwd of the donor tree the closer
to the root the crossover cut has to be.

We could then extend the weighted recombination of
two trees to the weighted recombination of three trees by
doing two sequential weighted recombinations and using the
formula proposed in the original geometric PSO paper to
pass from the weights of a combination of 3 points to the
weights of the equivalent two sequential combinations of two
points.

However, because of the asymmetry of treatment of parent
A andB the same number assigned towa andwb is likely to
have a different impact on the equilibrium point. To remove
this potential bias, we assign randomly the roles of donor
and recipient every time to the objects to recombine. So, for
example, when one recombines global best and particle best,
we pick at random the role to assign to these two objects.
We do not fix, for example, global best as donor.



E. Small common regions and fixed-size populations

During initial testing of the operators, we discovered the
problem that for two arbitrarily chosen trees in a population,
the common region is likely to be very small. This leads to all
crossovers based on the common region choosing crossover
points close to the root, and thus that the weights associated
with the crossover have little effect, and that most crossover
operations become very destructive.

One way of dealing with this problem is to ensure that
all trees in the population have the same size and topology
(they can of course still have different nodes). The easiest
way to do this is to require that all nonterminals have the
same arity, and then design the initialization and mutation
operators so as to ensure that all trees always are completely
expanded up to a certain depth, i.e. that all nodes at depths
up to the maximum depth are nonterminals and all nodes at
the maximum depth are terminals.

A possible problem with the fixed-size approach is that not
all good solutions to a particular problem using a particular
function set might be expressible using this particular tree
topology, and that even if they are, constraining the pop-
ulation to fixed-size trees might alter the structure of the
search space in unforeseen ways. The effects of the fixed-
size constraint on different search spaces will, as we see it,
most easily be estimated through direct experiments.

Alternatively, a way of making all functions have the
same arity without altering the semantic of the function
(but potentially inserting a lot of neutrality in the search)
is to consider all functions to have the arity of the function
with the largest arity in the set of functionals and discarding
the extra inputs due to the larger arity of the function. For
example, if you have a the functional set{+, ∗, sin} the
maximum arity is 2 (which is the arity of both+ and ∗).
The arity ofsin is 1. We can then artificially extend thesin
function to arity two by definingsin(x, y) = sin(x) so the
input y is simply discarded. In this spirit, we could allow
for constants occuring not only at the bottom of the tree,
but anywhere in the tree by defining the constant function
k(x, y) = k wherek is a real number for example. So, the
arguments of a constant function are do not affect its outputat
all. This would allow us to express any tree whose topology
is covered by the fixed size tree considered, without forcing
all solutions of the problem to necessarily be full trees. This
approach was not taken in the experiments in this paper;
here we have decided to restrict ourselves to functions of
arity two, allowing terminals only as leaves of the tree.

IV. EXPERIMENTS

In all experiments, we used theRegrowmutation, which
randomly selects a point in the tree and re-grows the tree
from that point in the same way as the uniform initialization
does, so that all branches reach maximum depth. This
preserves the fixed size of the trees in the population (if
combined with homologous or one-point crossover).

For both problem domains, we compared GPSO, using
the three different weighted crossover operators and undera

number of different settings for the three main parameters,
with random search and genetic programming. For each
algorithm, what counted was the maximum fitness resulting
from allowing the algorithm to make 50000 tree evaluations,
averaged over a number of separate runs. In all cases, trees
were initialized using uniform growth to depth 7, so that
all trees of the initial population of all experiments were
complete and had 64 terminals and 64 nonterminals. We used
the lattice neighbourhood topology, which has previously
been shown to work well with GPSO [15].

We tested two versions of random search. The first form
of random search (initialization search) consisted in simply
creating 50000 different trees using uniform growth initial-
ization, evaluating them and selecting the highest fitness
of any of these trees. This was repeated 100 times, and
the meanhighest fitnessand standard deviation the highest
fitnesses was recorded. (Note that this is the mean of the
100 trials, not the mean of the 50000 initializations, which
was always considerably lower.) The second form of random
search (mutation search) starts with a tree initialized through
uniform growth, and then applies 50000 Macro mutations to
this tree. Mean highest fitness over 100 repetitions of this
experiment was recorded, as was the standard deviation of
the highest fitnesses.

For a comparison, we chose the deterministic crowding
implementation of genetic programming as defined in [8]. In
deterministic crowding, two elements of the population are
randomly paired and (with a certain probability) recombined
to produce two offsprings. The offsprings are mutated and
then, after the evaluation, they replace their most similar
parent if they have equal or higher fitness, are discarded
otherwise. In our implementation the SHD distance was used
to evaluate the similarity between parent and offspring. We
tried all the three crossover operators in their non-weighted
form together with this algorithm. For each crossover type,
the mutation and crossover rate were varied respectively
within the set{0.3, 0.6, 1} and{0.1, 0.3, 0.6, 1}.

Being the subject of this paper, the geometric PSO was the
algorithm whose parameters we tested most extensively. For
each problem domain, all three of the above defined weighted
crossover operators were tested, and for each crossover
operator a range of settings for the three main parameters
of the GPSO algorithm were tried. Settings of0.0, 0.2, 0.4,
0.6, 0.8 and 1.0 were tried for both the inertia and the
memory parameters; for the sociality parameter, the setting
was1− inertia−memory (negative values of the sociality
parameter led to that configuration not being tested). The
mutation ratio was fixed at0.1. For each configuration, 20
independent runs were made, and the average and standard
deviation of the highest fitnesses of the last update of each
of the runs were recorded. The runs had a population size of
100 and lasted for 500 updates (generations), meaning that
each run performed 50000 tree evaluations.

A. Santa Fe Ant Trail

The Santa Fe Ant Trail, a classic and rather hard GP
Benchmark problem, was introduced in [6]; we have no space



for a full description here. Basically the target is to steer
an ant along a trail in a grid world, eating all the food,
in a limited number of time steps. The minimum fitness
is 0 (no food eaten) and the maximum is 89 (all food
eaten). In the original formulation, the allowed nonterminals
were IfFoodAhead (evaluates its left child if there is food
immediately ahead of the agent, and its right otherwise),
Progn2 (evaluates both children in succession) and Progn3
(has three children, evaluates all of them in succession). In
all experiments in this paper, the Progn3 nonterminal has
been eliminated in order to ensure that all nonterminals have
the same arity, making fixed-size populations possible. Both
in the original formulation and in this paper, the terminal set
consists of Left, Right and Move.

1) Random search:Using initialization search, the mean
highest fitnesswas 57.7 (standard deviation 6.6). (The mean
fitness of any particular randomly initialized tree was around
1 or 2.) Using mutation search, the mean highest fitness was
54.1 (9.4). None of the random searches ever reached the
global optimum of 89.

2) Genetic programming:With subtree swap, the deter-
ministic crowding algorithm worked best with mutation rate
1.0 and crossover rate 0.6, reaching an average highest
fitness (AHF) of 76.7 (standard deviation 14.2). One-point
crossover, with mutation 0.3 and crossover 1.0, allowed
the algorithm to reach AHF 65.7 (12.6); using homolo-
gous crossover, the best configuration was mutation 1.0 and
crossover 0.3, reaching fitness 66.1 (12.83). Global optima
were only reached in the experiments that used subtree swap.

3) Geometric PSO:The results of the GPSO runs were as
follows: For weighted subtree swap, the best configuration of
parameters found was inertia 0.2, memory 0.4 and sociality
0.4. Using this configuration, the AHF was 77.9 (standard
deviation 10.5), and a global optimum was reached 4 times
out of 20. For homologous and one-point crossover results
were worse. For one-point crossover, the best configuration
found was inertia 0.2, memory 0.6 and sociality 0.2, yielding
AHF 60.1 (10.2) and reaching global optimum one time out
of 20. For homologous crossover the best configuration was
inertia 0.2, memory 0.8 and sociality 0.0, bringing the AHF
to 69.9 (9.5).

B. Symbolic Regression

The second benchmark, also a classic problem in the GP
literature, is symbolic regression. The well known sextic
polynomial function

y = x6 − 2x4 + x2 (1)

was used in an experimental setup very similar to the one
introduced in [6].

As in the original formulation the only allowed functionals
are {+,−, ∗, %} while the terminals are the inputx or a
constant value that is drawn (at the creation of the tree) from
a uniform distribution in the interval[−1, 1]. All the functions
used have the same arity (two), fulfilling the requirement
for a fixed-size population discussed in III-E. The fitness
is evaluated in 50 points randomly drawn with uniform

distribution from the interval[−1, 1]. If in the selected point
the absolute error between the true value of the function and
the value returned by the individual under evaluation is lower
than0.01, the point is considered a hit, a miss otherwise. The
problems becomes a maximization one in which the fitness
of the individual is simply the total number of hits, its value
is therefore between 0 (no fitting at all) and 50 (good fitting).

1) Random search:Using initialization search, the mean
highest fitness was18 (standard deviation of2.6). With
mutation search, the mean highest fitness was as well18
(2.5). The average fitness for randomly created trees was
1.27 (2.7). None of the random search methods reached the
maximum fitness.

2) Genetic programming:The best configuration found
for the deterministic crowding algorithm with subtree swap
was where both mutation and crossover were set to 1; this
resulted in an AHF of38.25 (standard deviation6.95). With
homologous crossover the best configuration was mutation
0.3 and crossover 1.0, which yielded an AHF of35.35 (6.2).
One-point crossover performed best with both mutation and
crossover set to 1.0; AHF35.6 (10.08). Those were the only
settings that gave maximum fitness, twice in 20 repetitions.

The results obtained in [6] are better than those presented
here, possibly due to the population size we used. However,
for fairness of comparison we used the same population size
for both PSP and GP.

3) Geometric PSO:For weighted subtree swap, the best
configuration of parameters found was inertia 0.8, memory
0.2 and sociality 0.0; the AHF was33.4 (standard deviation
5.66). For one-point crossover, the best configuration was in-
ertia 0.2, memory 0.6 and sociality 0.2, yielding interestingly
the same AHF33.4 (6.1) which was obtained with subtree
swap. Homologous crossover worked best with inertia 0.4,
memory 0.6 and sociality 0.2, with an AHF28.55 (4.22).
On a few occasions, using subtree swap, global optima were
reached.

V. CONCLUSION

Geometric PSO is a generalization of the classical PSO
to general metric spaces. In particular, it applies to com-
binatorial spaces. In this paper we have demonstrated the
application of the GPSO algorithm to the space of GP
expression trees, inventing PSP. We believe this to be the
first algorithm to use PSO for directly represented expression
trees. Our initial experiments show that it performs about as
well as a sophisticated genetic algorithm on two standard
benchmarks, though better results on these benchmarks can
be found in the literature.

We have also defined and compared three weighted
crossover operators, with weighted subtree swap turning out
to perform best. However, significant work remains in finding
out which operators work best for PSP, and on what sort of
landscapes PSP works best. In particular, for the common
region-based crossover operators to work well, we need
to find a way of maximizing common regions without the
adverse effects of fixed-size populations.



As the two classic benchmarks have been subject to
much experimentation in numerous papers over the years, it
would be preposterous to think that we would beat all other
algorithms with the first implementation of a new algorithm.
Maybe further refinement of the operators will lead to a
PSP algorithm that excels in these benchmarks, but it is also
possible that PSO is a less efficient algorithm for GP than
the GA’s currently employed are; this in itself would be an
interesting result and merit further analysis. In any case,the
point of this paper is not beat the benchmarks but the proof
of conecpt. Above, we provide an initial implementation that
shows that it is possible to use a theoretically sound form of
PSO, operating directly in the space of expression trees, for
GP. We believe that these results open up both for the use
of particle swarm optimization in a variety of new spaces,
and for the development of a family of new algorithms to
complement the genetic algorithm in GP.

VI. A CKNOWLEDGEMENT

The third author would like to thank Stefano Cagnoni for
his helpful comments and suggestions on the initial concept
of PSP presented in this paper.

REFERENCES

[1] M. Clerc, Discrete particle swarm optimization, illustrated by the trav-
eling salesman problem, New Optimization Techniques in Engineering,
Springer, 2004, pp. 219–239.

[2] N. L. Cramer,A representation for the adaptive generation of simple
sequential programs, Proceedings of an International Conference on
Genetic Algorithms and Their Applications, 1985.

[3] A. Ekart and S. Z. Nemeth,A metric for genetic programs and fitness
sharing, Genetic Programming, Proceedings of EuroGP’2000, 2000,
pp. 259–270.

[4] J. Kennedy and R. C. Eberhart,A discrete binary version of the
particle swarm algorithm, IEEE Transactions on Systems, Man, and
Cybernetics5 (1997), 4104–4108.

[5] , Swarm intelligence, Morgan Kaufmann, 2001.
[6] John R. Koza,Genetic programming: On the programming of com-

puters by means of natural selection, The MIT Press, 1992.
[7] W. Langdon and R. Poli,Foundations of genetic programming,

Springer-Verlag, 2002.
[8] S. W. Mahfoud,Niching methods for genetic algorithms, Ph.D. thesis,

University of Illinois at Urbana-Champaign, 1995.
[9] A. Moraglio, C. Di Chio, and R. Poli,Geometric particle swarm

optimization, European Conference on Genetic Programming, 2007,
pp. 125–136.

[10] A. Moraglio and R. Poli,Topological interpretation of crossover,
Proceedings of the Genetic and Evolutionary Computation Conference,
2004, pp. 1377–1388.

[11] , Geometric landscape of homologous crossover for syntactic
trees, Proceedings of IEEE congress on evolutionary computation,
2005, pp. 427–434.

[12] , Product geometric crossover, Proceedings of Parallel Problem
Solving from Nature conference, 2006, pp. 1018–1027.

[13] , Inbreeding properties of geometric crossover and non-
geometric recombinations, Proceedings of the workshop on the Foun-
dations of Genetic Algorithms, 2007, (to appear).

[14] , Topological crossover for the permutation representation,
Journal of the Italian Association for Artificial Intelligence (2007),
(to appear).

[15] A. Moraglio and J. Togelius,Geometric pso for the sudoku puzzle,
Proceedings of the Genetic and Evolutionary Computation Conference,
2007, pp. 118–125.

[16] M. O’Neill and A. Brabazon,Grammatical swarm, Proceedings of the
Genetic and Evolutionary Computation Conference, 2004, pp. 163–
174.


