
A Comparison of Particle Swarm Optimization

Algorithms Based on Run-Length Distributions

Marco A. Montes de Oca, Thomas Stützle, Mauro Birattari, and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{mmontes,stuetzle,mbiro,mdorigo}@ulb.ac.be

Abstract. In this paper we report an empirical comparison of some
of the most influential Particle Swarm Optimization (PSO) algorithms
based on run-length distributions (RLDs). The advantage of our ap-
proach over the usual report pattern (average iterations to reach a pre-
defined goal, success rates, and standard deviations) found in the current
PSO literature is that it is possible to evaluate the performance of an
algorithm on different application scenarios at the same time. The RLDs
reported in this paper show some of the strengths and weaknesses of the
studied algorithms and suggest ways of improving their performance.

1 Introduction

Since the introduction of the first Particle Swarm Optimization (PSO) algo-
rithm by Kennedy and Eberhart [1] [2], many variants of the original algorithm
have been proposed. The approach followed by many researchers to evaluate the
performance of their variants has been to compare the proposed variant with
the original version or, more recently, with the so-called canonical version [3].
In many cases, these new variants are reported to perform better, see for in-
stance [4] [5] [6] [7].

Unfortunately, since there are no cross-comparisons among variants, there is
no general agreement on which PSO variant(s) could be considered the state-
of-the-art in the field. The motivation for conducting the comparison reported
in this paper is the identification of these variant(s). However, determining the
state-of the-art algorithm is not a trivial task. In particular, one must be aware
of the possible application scenarios in which a stochastic optimization algo-
rithm may be used. Our main concern can be solution quality, time or both. Of
course, in any case, the sooner we get a solution, the better. However, because
of the stochastic nature of these algorithms, finding a high quality solution in a
timely fashion only happens with a certain probability. Characterizing the distri-
bution of this probability is the purpose of the run-time distribution. Formally, a
stochastic optimization algorithm A applied to a problem Π will find a solution
of quality q in time t with probability PA,Π(q, t) = P (RTA,Π ≤ t, SQA,Π ≤ q),
and the bivariate random variable (RTA,Π , SQA,Π) describes the run-time and
solution quality behavior of an algorithm A when applied to problem Π ; the
probability distribution of this random variable is also known as the run-time

distribution of A on Π [8]. Since in continuous optimization we measure run-time
in terms of the number of function evaluations, we talk of run-length distribu-
tions (RLDs) rather than run-time distributions. This is the approach followed
in this paper.

An RLD completely characterizes the performance of a stochastic optimiza-
tion algorithm on a particular problem, regardless of the actual application sce-
nario in which we may be interested in. We say this because with an RLD we can
estimate the probability of finding a solution of a certain quality given some time
limit. This is the main reason why we chose to evaluate some of the most influen-
tial PSO algorithms using RLDs. As a bonus, an analysis based on RLDs allows
the identification of some strengths and weaknesses of the studied algorithms
and may also be used to design improved versions.

The rest of the paper is organized as follows. Section 2 briefly describes the
PSO technique and the variants compared in this paper. Section 3 describes the
experimental setup adopted for our comparison. Section 4 presents the develop-
ment of the solution quality over time and the RLDs of the studied algorithms.
Section 5 summarizes the main contributions and results presented in the paper.

2 Particle Swarm Optimization Algorithms

In the original PSO algorithm [1] [2], a fixed number of solutions (called particles
in a PSO context) are randomly initialized in a d-dimensional solution space.
A particle i at time step t has a position vector xti and a velocity vector vti.
An objective function f : S → <, with S ⊂ <d, determines the quality of a
particle’s position, i.e., a particle’s position represents a solution to the problem
being solved. Each particle i has a vector pi that represents its own best pre-
vious position that has an associated objective function value pbesti = f(pi).
Finally, the best position the swarm has ever visited is stored in a vector s whose
objective function value is gbest = f(s).

The algorithm iterates updating the velocities and positions of the particles
until a stopping criterion is met. The update rules are:

vt+1
i = vti + ϕ1U 1(0, 1) ∗ (pi − xti) + ϕ2U 2(0, 1) ∗ (s− xti) , (1)

xt+1
i = xti + vt+1

i , (2)

where ϕ1 and ϕ2 are two constants called the cognitive and social acceleration
coefficients respectively, U 1(0, 1) and U 2(0, 1) are two d-dimensional uniformly
distributed random vectors in which each component goes from zero to one, and
∗ is an element-by-element vector multiplication operator.

The variants we compare in this study were selected either because they are
among the most commonly used in the field or because they look very promising.
In the following subsections, we describe them in more detail.

2.1 Canonical Particle Swarm Optimizer

Clerc and Kennedy [3] introduced a constriction factor into PSO to control
the convergence properties of the particles. This constriction factor is added in
Equation 1 giving

vt+1
i = χ

(
vti + ϕ1U 1(0, 1) ∗ (pi − xti) + ϕ2U 2(0, 1) ∗ (s− xti)

)
, (3)

with

χ = 2k/
(∣∣∣2− ϕ−

√
ϕ2 − 4ϕ

∣∣∣
)
, (4)

where k ∈ [0, 1], ϕ = ϕ1 + ϕ2 and ϕ > 4. Usually, k is set to 1 and both ϕ1 and
ϕ2 are set to 2.05, giving as a result χ equal to 0.729 [9] [10]. This variant has
been so widely used that it is known as the canonical PSO.

2.2 Time-Varying Inertia Weight Particle Swarm Optimizer

Shi and Eberhart [4] [11] introduced the idea of a time-varying inertia weight.
The idea was to control the diversification–intensification behavior of the original
PSO. The velocity update rule is

vt+1
i = w(t)vti + ϕ1U 1(0, 1) ∗ (pi − xti) + ϕ2U 2(0, 1) ∗ (s− xti) , (5)

where w(t) is the time-varying inertia weight which usually is linearly adapted
from an initial value to a final one. In most cases, ϕ1 and ϕ2 are both set to 2.

There are two ways of varying the inertia weight in time: decreasingly (e.g.,
as in [4] [12] [11]) and increasingly (e.g., as in [13] [14]). In this paper, we included
both variants for the sake of completeness. Normally, the starting value of the
inertia weight is set to 0.9 and the final to 0.4. Zheng et al. [13] [14], use the
opposite settings. In the results section, these variants are identified by Dec-IW
and Inc-IW, respectively.

2.3 Stochastic Inertia Weight Particle Swarm Optimizer

Eberhart and Shi [15] proposed another variant in which the inertia weight is
randomly selected according to a uniform distribution in the range [0.5,1.0]. This
range was inspired by Clerc and Kennedy’s constriction factor. In this version,
the acceleration coefficients are set to 1.494 as a result of the multiplication
χ·ϕ1,2. Although this variant was originally proposed for dynamic environments,
it has also been shown to be a competitive optimizer for static ones [16]. In the
results section this variant is identified by Sto-IW.

2.4 Fully Informed Particle Swarm Optimizer

In the fully informed particle swarm (FIPS) proposed by Mendes et al. [7], a
particle uses information from all its topological neighbors. This variant is based

on the fact that Clerc and Kennedy’s constriction factor does not enforce that
the value ϕ should be split only between two attractors.

For a given particle, the way ϕ (i.e., the sum of the acceleration coefficients)
is decomposed is ϕk = ϕ/|N | ∀k ∈ N where N is the neighborhood of the
particle. As a result, the new velocity update equation becomes

vt+1
i = χ

[
vti +

∑

k∈N
ϕkW(k)Uk(0, 1) ∗ (pk − xti)

]
, (6)

where W(k) is a weighting function.

2.5 Self-Organizing Hierarchical Particle Swarm Optimizer with
Time-varying Acceleration Coefficients

The self-organizing hierarchical particle swarm optimizer with time-varying ac-
celeration coefficients (HPSOTVAC) proposed by Ratnaweera et al. [16] drops
the velocity term from the right side of Equation 5. If a particle’s new velocity
becomes zero (in any dimension), it is reinitialized to some value proportional
to the maximum allowable velocity Vmax. HPSOTVAC linearly adapts the value
of the acceleration coefficients ϕ1 and ϕ2 to enforce the diversification behavior
at the beginning of the run and the intensification behavior at the end. ϕ1 is
decreased from 2.5 to 0.5 and ϕ2 increases from 0.5 to 2.5. Finally, the reinitial-
ization velocity is also linearly decreased from Vmax at the beginning of the run
to 0.1 · Vmax at the end.

2.6 Adaptive Hierarchical Particle Swarm Optimizer

Proposed by Janson and Middendorf [17], the adaptive hierarchical PSO (AH-
PSO) is an example of a PSO with dynamic adaptation of the population topol-
ogy. In AHPSO, the topology is a tree-like structure in which particles with a
higher fitness evaluation are located in the upper nodes of the tree. At each
iteration, a child particle updates its velocity considering its own previous best
performance and the previous best performance of its parent. Additionally, be-
fore the velocity updating process takes place, the previous best fitness value of
any particle is compared with that of its parent. If it is better, child and parent
swap their positions in the hierarchy.

The branching degree of the tree is a factor that can balance the diver-
sification-intensification behavior of the algorithm. To dynamically adapt the
algorithm to the stage of the optimization process, the branching degree is de-
creased by kadapt degrees until a certain minimum degree dmin is reached. This
process takes place every fadapt number of iterations. The parameters that con-
trol this process need to be tuned for each problem [17]. In our experiments, for
the reasons explained in the next section, we set the initial branching factor to
20, parameters dmin, fadapt, and kadapt were set to 2, 1000∗m, and 3 respectively,
where m is the number of particles.

3 Experimental Setup

All the PSO variants described in the previous section were implemented for this
comparison. To ensure the correctness of our implementations, we tested them
on the same problems with the same parameters as reported in the literature1.
To allow the comparison of the results with previous works, we used some of the
most common benchmark functions in the PSO literature: Sphere, Rosenbrock,
Rastrigin, Griewank, and Schaffer’s F6 functions in 30 dimensions. The mathe-
matical definition of these functions is readily available in the literature (cf. [10]).
In our runs, these functions were shifted and biased exactly as specified in [18]2.
Because of this, our initializations are, in all cases, asymmetric with respect to
the global optimum.

The reported results are based on 100 independent trials of 1 000 000 func-
tion evaluations. In our experiments, we used swarms of 20 particles using two
different topologies: fully connected and ring with unitary neighborhood size.
The results are organized by population topology. Both topologies included self-
references (i.e., every particle is a neighbor to itself). This separation was needed
to highlight the influence of the used topology in the behavior of the algorithms.
Note that the AHPSO algorithm uses neither a fully connected topology nor a
ring topology and therefore appears in both sets of results.

Before proceeding to the presentation of our results, it is worth noting that
most PSO algorithms are not robust in their parameterization. For example,
in the PSO variants based on a time-varying inertia weight, the slope of the
increasing or decreasing inertia weight function is determined by the maximum
number of function evaluations. Another problem (for comparison purposes)
is that it is also possible to fine-tune the parameters of a variant to solve a
particular problem. A possible solution to this problem is to fine-tune all variants
for the problem at hand and proceed with the comparison; however, if our aim is
to solve real-world problems which generally have a structure we do not know in
advance, we need algorithms with a set of “normally good” parameters. For this
reason, in this study each algorithm used the same parameterization across the
benchmark problems. The actual values chosen for the parameters have already
been mentioned in the preceding sections.

4 Results

Tables 1 and 2 show the average value and standard deviation of the number
of function evaluations needed to achieve a certain solution quality with fully
connected and ring topologies, respectively. For each function, there are three
different solution qualities. The first one corresponds to the usual goal for that
function (cf. [10]). The second and third can be considered medium and high
solution qualities, respectively. The absolute values can be computed as follows:

1 For space restrictions, we refer the interested reader to the following address:
http://iridia.ulb.ac.be/supp/IridiaSupp2006-003/index.html

2 The values of the optima are specified in Tables 1 and 2.

if, for example, the desired solution quality is 0.01% and the optimum is at
-130.0, it means that the goal to reach is −130− (0.0001×−130.0) = −129.987.

Table 1. Average value and standard deviation of the number of function evaluations
needed to achieve a certain solution quality (S.Q.) using the fully connected topology.
Only successful runs are considered. {f1=Griewank (optimum at -130.0), f2=Rastrigin
(optimum at -330), f3=Rosenbrock (optimum at 390), f4=Schaffer’s F6 (optimum at
-300), f5=Sphere (optimum at -450)}

Function S.Q. (%) AHPSO Canonical FIPS Dec-IW HPSOTVAC Inc-IW Sto-IW

f1

0.077
9641.3 8345.8 – 433036 25741.8 8365.5 9713.8
1413 1271.4 – 24012.3 1647.1 852.8 1483.5

0.01
11613.8 9784.1 – 442995 34474.3 10115.8 11806.7
1508.1 1153 – 15996.2 7430.5 1274.6 1789

0.001
12994.3 11322.7 – 453478 57830 41082.6 13306.2

1481 2120.2 – 21515.5 61113.8 166025 2335.8

f2

30.30
4011 3836.6 960 364350 29852.8 53104.4 4820.7

1478.6 1065.2 56.5 42590.1 21636.7 212169 1534.7

15
6295 5550 – 427895 101322 516798 7758
1123 1400.1 – 30835.2 44487.3 490241 2554.6

1
– – – – 635060 – –
– – – – 133964 – –

f3

25.64
108546 50148.6 – 492989 489920 22381.2 56747.8
150900 58874 – 70214.1 258767 19505.5 105101

10
153596 87750.5 – 548089 665170 67398.8 95153.8
204835 90431.8 – 85071.9 205934 104077 148441

1
353182 168799 – 653042 762488 288477 232858
201800 97989.6 – 116809 218223 208034 152029

f4

3.3 × 10−6 33636.3 21044.6 5230 115876 84893.3 72287.1 56837.6
93014.2 44560.4 3921.3 24171.4 184640 196370 172404

1 × 10−7 34306.1 21478.2 5540 131253 86826 58508.4 57350.8
93024.3 44536.7 3964.9 22963.3 184097 161070 172359

1 × 10−8 34540 21789.6 5724 140434 88095.1 58760.6 57698.4
92995.1 44506.6 3932.1 19112.8 183701 161142 172325

f5

0.0022
11342.8 10913 – 433345 31210.4 8135.1 11127.8
1386.8 2255.7 – 6885.3 1436.4 944.4 1317

0.0002
14000.6 13122.4 – 446824 40913 9772 13680.4
1468.2 2648 – 6707.7 1616.7 946 1919

0.00001
15862.6 14955.8 – 456062 48546.6 11147.4 15469.6
1506.1 2795.7 – 6346.5 1723 1152 1890.7

Most variants, most notably FIPS, are greatly affected in their performance
by the used topology. With a fully connected topology, most of the tested variants
reach the specified solution quality faster than with the ring topology. FIPS
performs poorly with this topology: only in 4 out of 15 cases it reaches the
specified solution quality. However, whenever it does, it is the fastest algorithm.

Table 2. Average value and standard deviation of the number of function evalua-
tions needed to achieve a certain solution quality (S.Q.) using the ring topology. Only
successful runs are considered. {f1=Griewank (optimum at -130.0), f2=Rastrigin (opti-
mum at -330), f3=Rosenbrock (optimum at 390), f4=Schaffer’s F6 (optimum at -300),
f5=Sphere (optimum at -450)}

Function S.Q. (%) AHPSO Canonical FIPS Dec-IW HPSOTVAC Inc-IW Sto-IW

f1

0.077
9641.3 12377.8 8030.2 456568 29862 17268.8 15530.2
1413 849 957.8 11431.9 1538.6 1192.3 1538.2

0.01
11613.8 15865.6 12454.5 499384 40342.2 29852.1 23091.9
1508.1 4322.2 7074.7 68132.2 3660.7 50030.8 37164.4

0.001
12994.3 32157.9 21422.5 536619 60952.1 61165.4 35051.8

1481 62991 26631.3 90978.1 36481 115035 71418.5

f2

30.30
4011 30091.3 22599.6 360126 30052.8 34257.8 19767.8
1478.6 89696.1 9998.2 63803.9 12946.6 142877 84546.4

15
6295 – 136648 460690 117057 685132 206669
1123 – 100821 59069.9 37364.8 429521 275732

1
– – – – 811247 – –
– – – – 107569 – –

f3

25.64
108546 104684 226828 518732 361997 127764 151060
150900 130114 252722 70783.1 325196 154960 188680

10
153596 189872 320153 605140 291822 173475 215458
204835 216622 270742 124911 263481 166956 233277

1
353182 426285 443895 734466 – 531935 458950
201800 221124 242211 146611 – 270172 262995

f4

3.3 × 10−6 33636.3 43691.4 40416.9 123649 126988 28014 40241.2
93014.2 89702.5 90967.5 28220.1 204489 32195.1 79386.6

1× 10−7 34306.1 44897.6 49353.5 139871 129022 29321.8 42340.2
93024.3 89965.7 92344.4 27231.6 204003 32216.9 82079

1× 10−8 34540 45482.8 54939.6 150797 130576 29771.6 43142.4
92995.1 89856.7 92882.9 27877.7 203686 32327.5 82122.1

f5

0.0022
11342.8 13693.6 8266 459971 35518.2 14923 17148.6
1386.8 572.3 480.3 9304.4 1382.3 894.8 1129.21

0.0001
14000.6 16421.4 9920.8 477006 47480 18077.4 20660.8
1468.2 663.3 491.7 8254.2 1469.7 956.3 1265.5

0.00001
15862.6 18484.2 11169.6 488408 56889 20430.6 23289.4
1506.1 684.3 523.2 7977.2 1923.1 1055 1344.9

The data shown in Tables 1 and 2 should be taken cum grano salis. The
averages and standard deviations reported there are computed over successful
runs only. Since these data alone can be misleading, the median solution quality
over time (not included in the paper due to space restrictions) is reported in the
already mentioned URL. However, the good performance of FIPS using the ring
topology is confirmed by the median. FIPS is among the fastest variants.

HPSOTVAC is the only variant that is able to find the highest solution
quality target in the Rastrigin function. HPSOTVAC succeeds at reaching the
goal but spends many function evaluations to do that.

AHPSO performs relatively better than the other variants when they use the
ring topology. This is expected since AHPSO adapts the population hierarchy
from a highly connected one to a loosely connected one, so it exploits the benefits
of converging faster at the beginning of the run. As seen from the results, fast
convergence is somehow associated to the fully connected topology, or at least
with a highly connected one.

The Canonical PSO and the Increasing Inertia Weight variants perform
pretty well. With the fully connected topology, they are the best performers
in 10 out of 15 cases. With the ring topology, this number drops to only 4.
These variants clearly exploit the convergence properties of the fully connected
topology.

In this paper we report qualified RLDs which are cross-sections along the
computing time axis of the full joint distribution of the bivariate random variable
(RTA,Π , SQA,Π) described in Section 1. The interested reader is referred to [8]
for more information about RLDs. Figures 1 and 2 show the RLDs in four
benchmark functions. The shown RLDs correspond to solution qualities of 0.01%
for Griewank function, 30% for Rastrigin function, 10% for Rosenbrock function,
and 0.0001% for Schaffer’s F6 function. The results are organized by population
topology: on the left, the results obtained using a fully connected topology; on
the right, using the ring topology.

The “slope” of the shown curves point out interesting features of the algo-
rithms. If an RLD for a given solution quality is steep (but complete), it means
that the algorithm finds the solution easily. If the demanded solution quality
is high, the algorithm will need more function evaluations to find it. This will
cause the curve to change its position (the higher the quality, the more to the
right) and, possibly, its slope. This is the case with the HPSOTVAC variant
using the ring topology in the Griewank function (Figure 1,(b)). It can be seen,
however, that this is an exception and not the rule. Most variants have curves
with low steepness or steep incomplete curves which is an indication that in some
trials the algorithm gets stuck in some local optima far from the target solution
quality.

An analysis based on RLDs allows us to measure the severity of search stag-
nation experienced by optimization algorithms and lets us devise ways to coun-
teract it. For example, all variants suffer from severe stagnation when solving
Griewank and Rastrigin problems. To counteract it, they could use a restarting
mechanism as suggested by Hoos and Stützle [8].

(a) (b)

(c) (d)

Fig. 1. Run-length distributions. In (a) and (b), the results obtained in Griewank function. In (c) and (d), the ones in Rastrigin

(a) (b)

(c) (d)

Fig. 2. Run-length distributions. In (a) and (b), the results obtained in Rosenbrock function. In (c) and (d), the ones in Schaffer’s F6

Another related symptom of stagnation can be seen in the RLDs for Rosen-
brock and Schaffer’s F6 functions. In these cases, the RLDs have a low steepness
which highlights the lack of diversification strategies in most of the algorithms.
In these cases stagnation exists but is not as severe as in Griewank and Rastrigin.

The only variant that do not follow the pattern in these two problems is
the one based on a decreasing inertia weight and is the only one designed with
diversification in mind. This variant was designed to explore the search space at
the beginning and intensify the search near the end of a run. This could explain
the steepness of its RLDs in these two problems.

5 Conclusions

In this paper we empirically compared seven of the most influential or promising
variants of the original particle swarm optimization algorithm. Our approach
was to use run-length distributions (RLDs) and statistics of the solution quality
development over time.

Regarding the behavior shown by the tested PSO variants, it is evident how
important is the choice of the neighborhood topology in the performance of PSO
algorithms. This is something already known in the field, but the measurement
of its influence in the stagnation behavior of PSO algorithms had never been
done before. With respect to our initial motivation, we limited ourselves to the
comparison of some of the most influential variants, and from our results we did
not find any dominant variant.

One of the advantages of RLDs is that they allow the evaluation of a stochas-
tic optimization algorithm regardless of the actual application scenario it may be
used in. Another advantage is that they allow the identification of some strengths
and weaknesses of the studied algorithms that can be used to improve their per-
formance. Future research will focus on exploiting the information provided by
RLDs to the engineering of PSO variants. We sketched how this could be done.

Acknowledgments. This work was supported by the ANTS project, an Action de

Recherche Concertée funded by the Scientific Research Directorate of the French Com-

munity of Belgium. Marco Montes de Oca acknowledges support from the Programme

Alβan, the European Union Programme of High Level Scholarships for Latin Amer-

ica, scholarship No. E05D054889MX. Thomas Stützle and Marco Dorigo acknowledge

suport from the Belgian National Fund for Scientific Research (FNRS), of which they

are a Research Associate and a Research Director, respectively.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Piscataway, NJ, IEEE Press (1995)
1942–1948

2. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the 6th International Symposium on Micro Machine and Human
Science, Piscataway, NJ, IEEE Press (1995) 39–43

3. Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1) (2002) 58–73

4. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
1998 IEEE World Congress on Computational Intelligence, Piscataway, NJ, IEEE
Press (1998) 69–73

5. Kennedy, J.: Stereotyping: Improving particle swarm performance with cluster
analysis. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation,
Piscataway, NJ, IEEE Press (2000) 1507–1512

6. Fan, H.: A modification to particle swarm optimization algorithm. Engineering
Computations 19(8) (2002) 970–989

7. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: Simpler,
maybe better. IEEE Transactions on Evolutionary Computation 8(3) (2004) 204–
210

8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA (2004)

9. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle
swarm optimization. In: Proceedings of the 2000 IEEE Congress on Evolutionary
Computation, Piscataway, NJ, IEEE Press (2000) 84–88

10. Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and
parameter selection. Information Processing Letters 85(6) (2003) 317–325

11. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Pro-
ceedings of the 1999 IEEE Congress on Evolutionary Computation, Piscataway,
NJ, IEEE Press (1999) 1945–1950

12. Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In:
Proceedings of the 7th International Conference on Evolutionary Programming
VII, LNCS Vol. 1447. Springer-Verlag, New York (1998) 591–600

13. Zheng, Y.L., Ma, L.H., Zhang, L.Y., Qian, J.X.: On the convergence analysis and
parameter selection in particle swarm optimization. In: Proceedings of the 2003
IEEE International Conference on Machine Learning and Cybernetics, Piscataway,
NJ, IEEE Press (2003) 1802–1807

14. Zheng, Y.L., Ma, L.H., Zhang, L.Y., Qian, J.X.: Empirical study of particle swarm
optimizer with an increasing inertia weight. In: Proceedings of the 2003 IEEE
Congress on Evolutionary Computation, Piscataway, NJ, IEEE Press (2003) 221–
226

15. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation,
Piscataway, NJ, IEEE Press (2001) 94–100

16. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical parti-
cle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation 8(3) (2004) 240–255

17. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adap-
tive variant. IEEE Transactions on Systems, Man and Cybernetics–Part B 35(6)
(2005) 1272–1282

18. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Technical Report 2005005, Nanyang Technological
University, Singapore and IIT Kanpur, India (2005)

